TITLE

INSTITUTION
SPONS AGENCY
pUB DATE
GRANT
NOTE
AVAILABLE FROM Dale Seymour Publications, P.O. Box 10888, Palo Alto, CA 94303 ($\$ 35.00$; iacludes Fact Book and Problem Deck).
Guides - Classroom Use - Guides (For Teachers) (052)
-- Guides - Classroom Use - Materials (For Learner) (051) -- Tests/Evaluation Instruments (160)

MFOl Plus Postage. PC Not Available from EDRS. Astronomy; *Estimation (X.:thematics); Geometric Concepts; Geometry; Mathematical Applications; Mathematical Concepts; *Mathematical Enrichment; Mathematics Education; *Mathematics Instruction; Mathematics Skills; Problem Solving; Ratios (Mathematics); Science Education; Science Instruction; Secondary Education; *Secondary School Mathematics; Secondary School Science; Space Exploration; Space Sciences Graphing (Mathematics)

IDENTIFIERS

ABSTRACT

This unit is intended to teach estimation skills in such a way as to be relevant and useful to students as they apply them in various problem-solving activities. The teaching activities feature the earth, exploration into space, and the other worlds in the solar system. The teacher's guide contains four modules. Module I sugaests the use of several multi-media experiences to set the stage for the activities that follow. Module II, "The Solar System," incorporates teaching activities dealing with rounding numbers, estimation of sums, differences, products and quotients, graphing, and the application of these skills in problem solving. Module III, "The Space Shuttle," addresses the use of the space shuttle and stresses the mathematical concepts of ratio and proportion. Module IV, "The Space Colony," uses geometric concepts as students build a three-dimensional living space colony. The entire unit includes teacher notes, student worksheets, answer sheets, act: vity cards, transparency masters, and classroom games. It also contains a "Math Space Mission Fact Book," an annotated bibliography, and a "Math/Space Mission Problem Deck" (of card) for students. A "Solar System Planet Card Deck" is not included here insofar as it is duplicated in the "Math Space Mission Fact Book". (TW) originating it
Minor changes have been mede to improve reproduction quelity

Ponts of view or apinions stated in this docu Points of view or opnncin'y represent olficiel OEAI position or policy

A Teacher Invigoration and Curriculum Development Project
sponsored by the
National Science Foundation
and
Harvard Graduate School of Education

This set of student materials and teacher notes is published and distributed by the Regional Math Network at the Harvard Graduate School of Education. Permission is granted to the teacher who purchases or receives this book to reproduce the marerials for use with his or her students.

This material is based upon work supported by the National Science Foundation under Grant No. MDR-84-70399.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
REGIONAL MATH NETWORK
DIRECTOR
Katherine K. Merseth
ASSOCIA TE DIRECTOR FOR STAFF DEVELOPMENT Joan Karp
ASSOCIATE DIRECTOR FOR PRODUCTIONWinifred Covintree
TEAM LEADERS
Ann Grady. Quincy Market
Dorothy Galo. Sports Shorts
Maria Marolda Math / Space Mission
Anne Smith Ice Cream
Lisa Oray Staff Assistant
Winifred Covintree Graphic Artist
TEACHER FELLOWS

Lee Bevilaqua Ann Cook
Elizabeth Culbert Lisa Dahill
Sister Catherine Decker Leda Drouin Judy Fields Jean Foley
Sonia Harvey Richard Horner
Ellen Kreopolides
A. William Larson

Patricia Maloney
Judith McKendry
Evagrio Mosca
Leah Muth
George Perry
Yolanda Rodriguez
Edith Sparre
Dorothy Walsh
Judith White
Thomas Zaya

Archdiocese of Boston
Tower School
Hingham
Carroll School
Archdiocese of Boston
Chelmsford
Boston
Somerville
Boston
Boston
Waltham
Hingham
Waltham
Acton
Lexington
Archdiocese of Boston
Boston
Cambridge
Lexington
Cambridge
Chelmsford
Somerville

EVALUATION CONSULTANTS Hyoshin Kim and Barbara Neufeld of Education Matters, Inc.

Acknowledgements

We would like to acknowledge the contributions that several people have made to the development of these materials and to the overall implementation of the project.

For their presentations to the Teacher Fellows and project staff and for their helpful comments on the direction of The Regional Math Netwr rtk activities, special gratitude is due to:

Stanley Bezuszka	Peter Hilton	Steven Leinwand
Patricia Davidson	Alan Hoffer	Henry Pollak
Carole Greenes	Deborah Hughes-Hallett	Judah Schwartz
Michael Guillen	Margaret Kenney	Harold Weymouth

The following individuals have given technical advice and contributed their expertise to various aspects of the project:

Aardvark Systems	Steve Codell	Blythe Olshan	Christopher Unger
Enc Arnold	Lily Lee	Pamela Roth	Scott Wilder
John Chuang	Jeff Loeb	Philip Sadler	

Special appreciation to David Li, Boston Public School graduate, class of '86, who facilitated the creation of T-Stop Sales.

The Regional Math Network benefitted greatly from the untining efforts of the Research Assistants and the MidCareer Math and Science Teacher Training Program Fellows. These individuals included:

John Bookston	Mary Eich	Joy Moser	Joe Patuleia	Randy Starr
Lisa Bonanno	Matt Goggins	Sonya Nelthrop	Joel Poholsky	Ted Stein
John Burnette	Randall Hancock	Matt O'Connor	Jeff Sayah	Jearld Waitkus
Tom Czarny	David Masunaga	Eileen O'Sullivan	Scott Smith	

A special note of thanks is due to the Production Staff who typed, corrected and retyped the multiple drafts. Their willingness to work toward an improved final copy was impressive.

Steve Codell	Scott Cranton	Robert Hafer	Stuart Klein
Marianne Connolly	Lohn Domilici	Audrey Handelman Thompson Lisa Oray	
Brian Cranton	Charles Gerlach	Ruskin Hunt	Robert Spom

Particular recognition is given to Michael N. Smith of Laser Designs Corp. of Cambridge for his direction and organization during the final stages of production, and to Randy Hobbs of P\&R Publications, who guided the printing process.

Finally, the Regional Math Network gratefully acknowledges the administrators, teachers, students, schools and districts within the region that participated in the development and evaluation of the project materials. The Regional Math Network would not have been possible without their cooperation.

FOREWORD

Mathematics is an increasingly important skill for understanding and appreciating the challenges in our society. Yet the learning of these concepts poses difficulties for many students, especially as they reach the junior high/middle school years. At the same time, mathematics teachers are leaving their profession at a rapid rate, tired of using materials that have not been revised to reflect changes in our society and its workiorce. Clearly, a need exists to revitalize both the self-esteem and the teaching resources of those who have chosen this profession. The Reglonal Math Network aims to address these difficulties. The project, funded by the National Science Foundation, is sponsored by the Harvard Graduate School of Education.

The overall goal of the Regional Math Network is to invigorate individual teachers and to enhance the quality of the materials and techniques of those in the mathematics teaching profersion. To achieve this goal, the Regional Math Network provided 22 Teacher Fellows from eleven school systems with a structured opportunity to collaborate with local business professionals and university personnel in the development of innovative teaching materials and instructional strategies. The school systems represented in the project include Acton, the Archdiocese of Boston, Boston, Cambridge, Chelmsford, Hingham, Lexington, Somerville, Waltham, and the Carroll, the Tower, and the Buckingham, Brown \& Nichols Schools.

The Regional Math Network also seeks to stimulate math teaching in the greater Boston area. Toward that end, the Network sponsors seminars, receptions and meetings for math teachers and other interested professionals and students. The Regional Math Network serves as a model of collaboration on several levels: among different schools in the region, between schools and local businesses, and between these parties and the University, which primarily serves as a facilitator and resource.

A fundamental objective is to produce supplemental materials that are engaging for early adolescents and to improve their interest and ability in problem solving. The Teacher Fellows were organized into four project teams, each with a team leader and graduate research assistants. After conducting a needs and interest assessment within many regional schools and districts, each project team selected a specific context that provided the basis for the consideration of a major mathematical topic traditionally covered in the middle school curriculum. These contexts include an ice cream factory, local sporting events, the solar and space shuttle systems and Quincy Market, a local tourist and commercial area. To better understand the context, teams conferred with members of the local business community and worked with students from Harvard's MidCareer Math \& Science Program, former business professionals studying to become mathematics teachers.

Each of these four context areas is linked to specific mathematical tcpics. While this emphasis does not exclud ; other related topics, teachers seeking materials on a particular topic may choose to work with a specific unit. The topics of emphasis include:

Ice Cream - Fractions
Math/Space Mission - Estimation, Geometry and Relational Concepts
Quincy Market - Ratio and Proportion
Sports Shorts - Decimals and Percents

All four of the units include a common emphasis on problem posing and problem solving. Many of the activities are open ended, encouraging students to pose their own problems for solving. Other themes and topics common to all of the units stress skills of estimation, graphing, polling, reading and interpreting charts, calculators and computer application and mental arithmetic. All of the materials stress realistic, mathematical applications that are accessible and motivating to middle school students.

Each of the units contains a variety of teacher and student resources. These include teacher notes and teaching suggestions, student pages, answers, activity cards, transparency masters, manipulative materials and classroom games. Additionally, the Quincy Market unit contains a computer disk suitable for any Apple computer.

These materials were written by teachers for other teachers to use. Hence, the materials and format are designed with a teacher's needs and constraints in mind. Comments about these materials are welcomed and may be made by writing to Professor Katherine K. Merseth, The Regional Math Network, Harvard Graduate School of Education, Cambridge, MA 02138.

Regional Math Network • Harvard Graduate School of Education • Harvard University

Embark on an Amazing Journey...

OUT OF THIS WORLD!

An Overview for Teachers

MATH / SPACE MISSION

Notes to Teachers

Embark on an amazing journey...out of this world.

This unit is designed to teach estimation skills in such a way as to be relevant and useful to students as they apply them in various problem-solving activities. The teaching activities and the matth wil! be developed within the context of our world and exploration into space and the worlds around us. To incorporate a "local flavor," local people, educational institutions, and businesses are incorporated into lessons where appropriate.

SUMMARY OF ACTIVITIES

MODULE I: INTRODUCTORY ACTIVITIES

The introduction to the unit consists of multi-media experiences using videotapes, slides, and films - "grabbers" - to motivate and set the stage for the activities that follow.

MODULE II: THE SOLAR SYSTEM
This module explores our planet Earth, its atmospitere, and its relationship to the sun and moon. It then moves out to the other planets and encourages students to become familiar and "travel" within our comer of the galaxy. The activities incorporate direct teaching lessons in rounding numbers; estimation of sums, differences, products, and quotients; graphing; and the application of these skills in problem-solving.

MODULE III: THE SPACE SHUTTLE

How will we travel in outer space? In this module, students become familiar with the shuttle, making and using a model of the orbiter, and considering life and work on board. Ratio and proportion as applied to scale models comprise the strong math strand in this module.

MODULE IV: THE SPACE COLONY

This module is an interactive experience in which students should stretch their imaginations and apply their skills to build a colony. Where to place the colony in the solar system and how to maks it self-sustaining are challenges for the class. Decisions such as how many people would live in it, for how long, and how they will function in it can stimulate grcup discussions, value clarifications, and decision-making. This module incorporates geometric concepts as students locate the station and build a threedimensional living space.

Math/Space Mission Overview of Components

The Solar System Planet Card Deck

The Planet Card Deck contains useful data about each of the nine planets as well as the sun and moon. They are used in the lessons or can be used as a source of discussion or "problemmaking" activies.

Math/Space Mission

 Problem DeckThe Problem Deck presents problems which relate to and extend the lesson topics. Problem card́s are crossreferenced with each lesson and can also be used by students independently.

Math/Space Mission

Overview of Content

MODULE I: INTRODUCTION Page
Emioark on an Amazing Journey 11
Space: Here and Now 14
Man's First Space Journey 18
MODULE II: THE SOLAR SYSTEM Wha's Wut There?
Meeting Our Neighbors...Planets Near and i sanets Far. 28
Meeting Our Neighbors. ..Planets Large and Planets Small. 32
How Far is Pluto?...How Near is Mars? 26
Let's Pretend. 44
Let's Extend...Bringing the Planets Down to Earth's Scale. 48
Let's Try li...Travelling on Earth 52
set's Fly It...Travelling in Space 56
MODULE III: THE SPACE SHU:TLE The First Step of the Journey
Leaving Earth ...Its' Atmospher'9s and Beyond. 62
All Aboard. 34
The Shuttle ...Let's Make It. 76
Creative Blast-Off (Optional) 83
Orbiter "Specs" 84
"Sure it's Big... But Compared to What?" 88
Planning for Life on Board. ..Let's Eat. 92
Planning for Life on Board. . Let's Work 59
Planning for Life on Board. . Let's Experiment. 104
3,2,1 Blast-Off 108
Toys in Space (Optional) 114
MODULE IV: THE SPACE CÓLONY The Threshold for Exploration
From Known to Unknown. 130
Where Shall We Locate? 134
Living on the Colony 136
What Will the Colony Be jike? 140
What Next? 146

Estimation Skills

				Бumeja ereos pue sepow eqe:s
19				
23			-	
25				

Module III: The Space Shuttle
Leaving Earth
Mission Control
All Aboara
Measurement

	\bullet				\bullet
		\bullet			

				\bullet
			\bullet	
			\bullet	

Embark on An Amazing Journey
Space Here and Now
Man's First Space Journey

Embark on an Amazing Journey...

Regional Math Network - Harvard Graduate School of Education - Harvard University

EMBARK ON AN AMAZING JOURNEY

A "Media" Introduction

to
Space and
Space Exploration
Guidelines for Teachers
To capture and excite the students about space, engage them in a "media" experience by:

- Viewing slides such as:
-- those available from the Jet Propulsion Laboratory at modest cost.
- Viewing a television show such as:
-- "Great Space Race" (PBS)
-- "Cosmos Series" (PBS)
- Taking a field trip such as:
-- Museum of Science, Science Park, Boston, MA 723-2500
Special programs in science and space can be arranged.
Contact person is Matt Stein.
-- Smithsonian Astrophysical Observatory, Pinnacle Road, Harvard, MA 456-3395

This is a privately funded group engaged in "listening" activities for research on outer space.
Contact person is Skip Schwartz.
-- Hayden Planetanium, Museum of Science, Science Park, Boston, MA 723-2500
Planetary show can be planned for school groups; free shows on Friday evenings.

To focus the students' interests on space, you might consider these pointers:

- The more you enliven the room with posters and pictures, the more provocative the environment will be to stimulate good and varied questions
- The teacher and student should not be intimidated by their lack cf knowledge or number of questions conceming the solar system and the shuttle program. The "media" should be presented in an informal manner, with reactions in the form of both comments and questions.
- You may plan as much or as little time in the media activities as you wish. They serve to set the stage for questions and intersst.
- Many discussion topics for the slides and films are suggested. You may use them as you wish. You should pick the ones with which you feel most comfortable.
- You may prefer to start each class with one question.
- Many questions have no right or wrong answers. They are valuable however, because they provoke the sturents' curiosity and encourage them to use their imaginations.
- For those questions whose answers are not immediate, the students may research the issue raised.

To extend the unit to include a broader scope:

- Journal:

Students could be encouraged to keep a joumal reflecting on their activities "in space." Specific topics for the journal will be suggested when appropriate.

- Other subject areas:

The context of space is rich with opportunities to develop topics in other subject areas. Many of the activities deal with science topics, which can be emphasized and highlighted to complement goals of the science curriculum. The journal encourages a Language Arts involvement. The discussions can be extended to goverment, philosophy, or ethics. Throughout the unit, music, art, and poetry may be introduced to express thoughts and conjectures.

- Students might form a "Space Club" for independent study, research, and activities.

SPACE: HERE AND NOW

Preparation/Materials
 - Review Fact Book-Solar System Data
 - "Connect the Coordinates"

During class:

- Invite the students to launch a space exploration mission.
- Explain that we must make all the necessary preparations, including reviewing what we know about the solar system, readying a transportation plan, and finally building a space station at the outer reaches of our solar system so we can extend our explorations.
- To add motivation, the space exploration could be directed to the goal of searching for intelligent life. Both the U.S. and the U.S.S.R. have goverment-sponsored projects which are seeking signs of intelligent life elsewhere in the Universe. In the U.S. it is called the SETI project, or the Search For Extraterrestrial Intelligence. The primary tools are large radiotelescopes which listen for signals from inteligent civilizations. Students can read about them in the article included in the Fact Book.
- Describe the three parts of the unit and of our space exploration:
- The Solar System: What's Out There?
- The Shuttle System: The First Step of the Journey
- The Space Colony: The Threshold for Exploration
- Discuss any questions the students may have about space and the problems they think we may encounter in these exploration activities.

Extensions

- Read and discuss "The Pinnacle Road Observatory..."
- Journal Entry: "What Do You Wonder About Space?"

Is there intelligent

 life out there?
Read the article to learn about SETI.

Suppose there was someone on Pluto who was trying to communicate with us. You will send a message today. The message will travel at the speed of light. The Plutonian answers it the moment the message is received.

How long will it take before the reply arrives?

What else do you wonder about?

The IGaruard 3 3 ost
 "We Deserve A Break Today"

The Pinnacle Road Observatory: A Nebulous Search in the Stars for Extraterrestrial Life

"It is a subject so rich in bpeculation," Rugrests Harvard University physics professor Paul Horowne, referring to the Search for Extraterrenrial Intelligence (SETI) currently beins mounted at Harvard University's Oak Hill Laboratory on Pinnacle Road. "Disagreemeats are baced on feetings and the fact is we don't have any fects." Seill, a dearth of facts does not seem to nave limited the range and rate of inspired scientific gueswork in a fied that could, if successful, revolutionize our perception of ours'ves and reshape our destiny as a planer.

Professor Horowitz and several colleagues, including Michaei Papaginnus and Eugene Mallove. are converting the old e4-foot radio relescope, last used in 1975, into an instrument capable of rectivins interscellar communications vie radio frequencies from thousands of light years away. Horowitz has been awarded a $\$ 29,000$ grant from an as yet unannounced source to fund the search, which is slated to begin early mext spring.

Using a portable receiving system called "suitease SETI" because of its easy transportability-it resembles stereo components in size-the telescope dish will be able to tune into a quarter of a million separate radio choands simultaneously, bisteming. not talking. on a range of wovelengths known as "magic frequencies." in a microwave region of the rastio spectrum where cosmic "static" is reduced. "There is a need." Horowitz has written in a brief nontechaical paper on the subject, "for some sont of universal frequency marker that would be recognized by civilizations that hed not previously communicated." In the microwave region of the spec.
'There are a million million stars per person-onearth. . . . There is nothing extraordinary aboui our sun and nothing special about our earth.'
trum there is a "magic frequency" eminted naturally by neutral hydrogen atoms. Horowitz explains these are "the simplest and most abundant atoms in the universe; (their) radiation must be well known by astronomers everywhere." "Everywhere"" inctudes every potential source of extraterrestrial signal in two-thirds of the sky, or one million "candidate suars."

Extremely precise in its ability to delineate frequencies, receiving apparatus has evolved since the 1900 Oum Project, the firss galectic search, to become smaller, cheaper, and more powerful, able to

The 'sulveas SET7' will the she masage when other ctullizertons cell.
pick up signals and deliver them to an observer almost instantaneously. Putting SETI and its equipment in an hastorical perspective, Horowitz quotes Massachusets Institute of Technology (MIT) profescor Philip Morrison: " 'The Nina, the Pinta, and the Santa Maria weren't jet planes, but they did the job." The total system we're talking about." Horowitz continues, "amounts to a mosquito flsp. ping its wings a few times. It's an extremely sensitive scence."
"We know the facts. We know they're out there," Horowitz says cheerfully as he fiddles with the heating dials on a recent dank November day in an office whose walls and noor are covered with scientific journals. Horowitz, who reserves his Sundays for Harvard, appears at the doorway of the small cinder block structure behind the radio telescope at Oak Hill Observatory wearing a green ski cap and work clothes, eager to get on with a job that may put the planes on the threshhold of a realm of possibilities.
"There's a lot of support." he says, smiling. "from atoday old professons sort of over the bend. like me." (Horowitz is in his mid-hirties.) "There's a lot of curiodity to do the experiment, to rule out the probability that the sky is alive with signals."

Belief in the existence of other technological clvilizations reems widespread and is based on the observation that nature does not go in for a sinale phenomena. "We don't see unique examples of
things in nature," Horowitz points out, sutgesting at the sheer numbers-three billion stars in our galaxy that might have appropnate planets orbiting them, and ten billion galaxies-rule out the possibility that ours is the only planet in the universe sustaining an advanced civilization. "There are a millinn. million stars per person on earth, so there would seem to be a lot of chances. . . . There is nothing ix. traordinary about our sum and nothung special abo'it our earth. Carl Sagan is a bit of an optimist on the : mstters. A pessimist," Horowitz remarks, "woulo probably say there is only one technological civiliza. tion in the galaxy, but I don't like statistical arguments where you have to be a statistical anoma. ly."

While it would be possible, though extrenstly expensive, to communicate by gamma rays or rocset ship (to so to the nearess star would cost pre equivalent of a half million years of United States power consumption), or to hurl projectiles into the universe like carriet pigeons, sending radio frequencies appears to be a "more hopeful and cheaper" route. In the last twenty years there have been 33 such searches conducted in seven countries involding twelve different redio observatories around the world, says Papagiannis, who is an astronomy professor at Boston University and president of the In . ternational Astronomical Union, and is himself an enthusiast in the search for extraterrestrial in. telligence.
"When the first detection comes it will be like a
beacon-a kind of agnal intended to attract attenbion." Horowiz zugzens. Looking for a menal is primanly a matiet of hstemung. Once communication s established, serentists will use a synthetce languate ralied Cosma Lingue that sarts with seiance and math as a means to astablish a common understanding of symbols and from there progresses into more philosophical and abseract termory. "It is as if you went back to Chaucer's tume and showed them a computer. Moss of the communceation is going to be one way at firs, a pur of monologues runaing back and forth. . . ."

II is obvous to most serentists that the impect of an intersellar dialogue would be tremendous. revolutionzing our now of ourselves and our universe. Scill, alahough there are any aumber of divergent opinions about whether there are othep technologeal civilizations and where they may be. differences are dwinding in the fece of the overwhelming thrusef toward "a coordinated, worldwide. and systematic seareh for exiraterrestrial intelligence." which Carl Sagan urged in an interat uonal pettion in Science magance last month.

There are those who speculate that the galasy is populated by a wise and watehfui multitude. "They might be all over the place." says Mallove, president of Astronomy New England and a volunteer in the SETI Droject. "The colones migh leapfrog from star to star in a cosmie lifetime to quackly populate the entire calaxy." Since 1977, the company Mallove staned with a friend has functioned as a mail order busness. developing procucts that attractisely Illustrate pnncrples of astronomy. As p-breesed into the office he sef down a deheate three-dimensional "map" of the solas system showng the relationship of the atars that are nearest the sun up to a distance of 21 light years away. Each star is a ball the aze of the head of a pin. painted in neon colors keyed to show distinct and shared properties.

Alter graduating from MIT in the Aefo-Astro Depanment of Enguneering. Mallove. a resident of Hollistion. worked on sdvance propuision concepts But now. "siek of doing death and desiruction work." he is hoping to sell a syndicated series $0^{\prime \prime}$ articles. called "Siar Bound." on space travel. astronomy. and SETI. Although he is enthusasic about the Harvard SETI provec:. Wallove himself is intereated in the concept of interscliar travel in space arks. or "generation thins"-ciosed life systems transporung to the stars the ancetsors of those who will eventually arrise. "I come from than side of the SETl afgument." he says.

According 10 Papagiannis, there ere two porsible "icenatios." "It is a matter of prefurence," the says. "Whicherer one you edope depends on how you sex thing." In the firs seaserso, a avilization grerts in a sure syateri and mays in that gus oystem always. "If you follow thas scemerte." ha edds, "you oaly look an the stetans stars for pooilite seuress of lift," In the meoed, a techachodical deviratien com nor stay pur. bur moves in meomive waver to cotonise ndichboving ters. If you ere a mase-memario advecatr, like Papadanais and Mallove. yee suma also adope the motion then a would be well to look
 to home. If so signala are forbeomiag, k can be assumod, sugemes Papeginanis. tha "the colonizs. tion wave has not smopt through the galesy fand that extruterrestrial tife has not doveloped to a level of terhnoloty similar to or more advaced than our own."
"I, too, monder why they're ase all over the

The redto ioloseope of the Havert Observirory. Profoser Horowits's str-year-ade sen is in foreground.
(Photes courtesy of Paul Horowita)
place. It they're not they must be wery, wry rarc," stys Mallove. Despint his own per theories. Mallove If cacted abous the effer of any kind of interstellar comsumaienior' that:' once mablished, could advaces our etrilleation trmanaturably toward new survivil erraceim. "We will have to ser ac a plasel is-

Papacianin botiove thit 'If the galaxy has alswedy boun eolented, jalacpic divilisations would have mablished thers rpectupolonies in the ateroid beth-an ided source of raw materials for spece habitats. It would be iscucusable, he says. "to keep merchias for dome of galecie chviltations in fer. away gens when the evidance could posibly be found in our imandian vicincly."

At its general asembly last Ausust in Paros, Orvece, the Intemadional Assonomical Union arabished a mew comanisuon. Saerch for Extra-
urrestrial Life, and elected Papagiannis as the first prasident. Tt: commission, which alresedy has 200 members. will coordinate mamer activities on the march for extratermeterial Hfe at the international lowel. Activitias inctude the satereh for planers in other soler syncms; the smereh for redia signals, inteational or unintentional, from other galactic etvilizadions: the study of Bolocielly tmportant in serucliar molesulas: and spertroceopic sudies of volocical ectivtios in other eolar syumens. "The endorsameat of this youns fied by the international society of the International Astronomical Union .. a theifleas tup ia the offors of seimusts to moui. - conemed project to sureh for life in the untverse." Papagiannis adds.

If the Oak Hill SETI project in Harvard receives a galactic signal. if will be the first. Paul Horowitz is really looking formard to it.

MAN'S FIRST SPACE JOURNEY

```
Preparation/Materials
- "Man's First Space Joumey"
```


Hath Skills

- Coordinate Graphing
- Place Value of Large 'Numbers
- Factors and Primes

During class:

- After an introduction to space travel and the solar system, ask students to plot and connect the points on the coordinate graph, "Man's First Space Journey."
- Use either of the two problem sheets to name the coordinate points.
- For a simpler version, use the problem sheet on which the coordinates of the points are clearly given and the students simply locate the points.
- For a challenging activity, use the problem sheet on which problems must be solved in order to determine the numerical values of the coordinates.

Extensions

- "We've Come a Long Way (Time Line)"
- "Name the Planet"

Label and plot these points on the graph and connect them.
A: $(x, y)=(9,19)$
x coordinate $=9$
y coordinate $=19$
H: $(10,3)$
I: $(12,3)$
J: $(12,5)$
B: $(6,17)$
C: $(4,14)$
D: $(4,9)$
K: $(12,7)$
L: $(15,9)$
E: $(8,7)$
M: $(16,12)$
$\mathrm{N}:(16,14)$
F: $(8,5)$
G: $(8,3)$
O: $(14,17)$
P: $(11,19)$

CONNECT THE COORDINATES MAN'S FIRST SPACE JOURNEY

An ordered pair is usually written (x, y), where x is the coordinate on the x-axis and y is the coordinate on the y-axis. (x, y)
Find the Coordinates of A-P.
POINT COORDINATES OFPOINT

A

C

E

F

1937

x coordinate $=$ digit in hundreds place
\qquad y coordinate $=$ total number of hundreds in the number
B The nearest star is Proxima Centauri. It is one hundred seventeen million miles away from earth. x coordinate $=$ number of zeroes in the number y coordinate $=$ number of millions in number when one hundred mililion is subtracted from it.
\qquad
four million one hundred and seven thousand and fourteen* x coordinate $=$ number of millions y coordinate $=$ two times the number in the thousands place

D Scientists think the sun has existed fo: nearly five trillion years.
x coordinate $=$ number of inner planets
\qquad y coordinate $=$ three less than the number of zeroes in the number of years the sun has existed
\qquad
Experts say our earth is $4,500,000,000$ years old. x coordinate $=$ number of zeros in the number y coordinate $=$ the common factor of 14 and 19

Some experts say our galaxy has about four hundred million stars.
\qquad x coordinate $=$ number of zeroes in the number
y coordinate $=$ the common factor of 15 and 25
G
Humans have existed on earth about five hundred thousand years.
x coordinate $=$ number of planets in our solar system other than the earth
\ldots coordinate $=$ two less than the number of zeroes in the number of years humans have existed.

POINI
 H

COORDINATES OF POINT
Scientists estimate that approximately $6,400,000,000,000$ people have existed since the earth has existed. $\ldots \ldots$ coordinate $=$ sum of the first two digits in the number
\qquad y coordinate $=$ the common factor of 12 and 45

1 12,357
\qquad x coordinate $=$ numbe of thousands in the number y coordinate $=$ digit in the hundreds place
J \qquad x coordinate $=$ half the number of hours in 2 day on Mars ___y coordinate $=$ number of moons of Uranus

K The distance of the nearest sun to our sun is $40,070,000,000,000,000,000$.
\ldots _ coordinate $=$ number of zeroes after the trillions
y coordinate $=$ number of zeroes in sixty million
L \qquad x coordinate $=$ number of zeroes in 7 quadrillion
M y coordinate $=$ number of hours in a day on Jupiter 16,231,276
\ldots _ coordinate $=$ number of millions in this number
___ coordinate $=$ digits in the thousands and hundreds place
N \qquad x coordinate $=$ number of moons orbiting Jupiter
\qquad y coordinate $=$ least common multiple of 2 and 7

0 \qquad x coordinate $=$ two less than the number of Jupiter's moons y coordinate $=$ sum of Jupiter's moons and Earth's moon

P \qquad x coordinate $=$ the fifth prime number $\ldots y$ coordinate $=i .3 n$ more than the number of planets in our solar system

Markinds journcy into siace began in 1783 when people boarded primitive hot-air balloons and floated away from the Earth's surface.

CONNECT THE COORDINATES MAN'S FIRST SPACE JOURNEY

An ordered pair is usually written (x, y), where x is the coordinate on the x-axis and y is the coordinate on the y-axis. (x, y)
Find the Coordinates of A-P.
POINI COORDINATES OFPOINI
A

1937
x coordinate $=$ digit in hundreds place

B

The nearest star is Proxima Centauri.
It is one hundred seventeen million miles away from earth.
x coordinate $=$ number of zeroes in the number
y coordinate $=$ number of zeroes in number when one hundred million is subtracted from it.
"four million one hundred and seven thousand and fourteen"
\qquad x coordinate $=$ number of millions

D
Scientists think the sun has existed for nearty five trillion years.

x coordinate $=$ number of inner planets
y coordinate $=$ number of zeroes in the number of years the sun has existed

E

Experts say our earth is $4,500,000,000$ years old. x coordinate $=$ number of trillions in the number
y coordinate $=$ number of billions in the number
\qquad

Some experts say our galaxy has about four hundred million stars.
x coordinate $=$ number of zeroes in the number
y coordinate $=$ the common factor of 14 and 49
G
Humans have existed on earth about five hundred thousand years.
\qquad x coordinate $=$ number of planets in our solar system othei than the earthy coordinate $=$ number of zeroes in the number c. years humans have existed.

POINI COORDINATES OF PONT
H
Scientists estimate that approximately $6,400,000,000,000$ people have existed since the earth has existed. \times coordinate $=$ number of zeroes that follow the billions place y coordinate $=$ the common factor of 12 and 45

1
 12,357
\qquad x coordinate $=$ number of thousands in the number
y coordinate $=$ digit in the hundreds place
x coordinate $=$ number of radio observatories in the world
searching for "messages" (see article)
y coordinate $=$ number of moons of Uranus
K The distance of the nearest sun to our sun is $40,070,000,000,000,000,000$.
\qquad x coordinate $=$ number of zeroes after the quadrillions
\qquad y coordinate $=$ number of zeroes in sixty million
L $\frac{15}{9}$
x coordinate $=$ number of zeroes in 7 quadrilion
y coordinate $=$ number of satellites orbiting Satum
M
1,623,151,276
\times coordinate $=$ number of hundreds of millions in this number
12 y coordinate $=$ digits in the thousands and hundrecis place

N \qquad x coordinate $=$ number of moons orbiting Jupitery coordinate $=$ least common multiple of 2 and 7
O $14 \times$ coordinate $=$ sum of Uranus' moons and ringsy coordinate $=$ sum of Jupiter's moons and rings
P \qquad x coordinate $=$ the fifth prime number y coordinate $=$ number of planets in our solar system

WE'VE COME A LONG WAY...

Here is a list of "firsts" in space thoughout history. Record each date. List the dates in chronological order. Graph the events on a dime line.

Date

Date
A. The first air stewardess was Ellen Church, who A. made her flight on May 15, 1930, on United Air Lines.
B. The Wright brothers ushered into the word their epoch making invention of the first successtul aeropiane flying machine at Kill Devil Hills, south of Kitty Hawk, N.C. December 17, 1903.
C. The XP-59, the first jet-propelled airplane designed and bult in tine ن.S. was flown on Oct. 1, 1942, at a secret testing base in Muroc, Calif. The jet's speed was 400 m.p.h. It flew at a height in excess of 40,000 feet.
D. The first dingibibe fight was schedule for July 3, 1878, with John Wise, of Lancaster, Pa. as the pilot. The dirigible was shaped like a cigar and had a wicker cage, partitioned with a door and window.
E. Blanche Stuart Scott made a solo fight on October 23, 1910, in Fort Wayne, Ind., becoming the first women aviator to make a public fight.
F. The first aiplane flight was made Aug. 14, 1901,
F. \qquad near Bridgeport, Conn., by Gustave Whitehead, in his airplane "No. 21."
G. First transatlantic solo fight from New York to
G. \qquad Panis was made by Charles Lindbergh on May 20, 1927.

WE'VE COME A LONG WAY...

Here is a list of "firsts" in space thoughout history. Record each date. List the dates in chronological order. Graph the events on a time line.

Date (rank)
A. The first air stewardess was Ellen Church, who made her flight on May 15, 1930, on United Air Lines.
B. The Wight brothers ushered into the world their epoch making invention of the first successful aeroplane flying machine at Kill Devil Hills, south of Kitty Hawk, N.C. December 17, 1903.
C. The XP-59, the first jet-propelled airplane designed and built in the U.S. was flown on Oct. 1, 1942, at a secret testing base in Muroc, Calif. The jet's speed was 400 m.p.h. It flew at a height in excess of 40,000 feet.
D. The first dirigible flight was schedule for July 3, 1878, with John Wise, of Lancaster, Pa. as the pilot. The dirigible was shaped like a cigar and had a wicker cage, partitioned with a door and window.
E. Blanche Stuart Scott made a solo flight on October 23, 1910, in Fort Wayne, Ind., becoming the first women aviator to make a public fight.
F. The first airplane flight was made Aug. 14, 1901, near Bridgeport, Conn., by Gustave Whitehead, in his airplane "No. 21."
G. First transatlantic solo flight from New York to Paris was made by Charles Lindbergh on May 20, 1927.
E. $1910(6)$
H. The first balloon flight was made by Edward Warren, 13 years old, on June 23, 1784, at Baltimore, Maryland.
I. The first glider flight occured on a hillock, south of the valley of Otay, Calif., on March 17, 1884, by John Joseph Montgomery. The glider traveled about 600 feet.

C. 1942 (10)

J. The first launching of a liquid-fueled rocket was made by Dr. Robert Goddard at Auburn, Mass., on March 16, 1926.
K. The first artificial satellite, named "Sputnik"
D. 1878 (2) ("Fellow Traveler") was put into orbit on Oct. 4, 1957, fom the USSR. It reached a velocity of more than $17,750 \mathrm{mph}$.
L. The first successtul manned space flight began in USSR on April 12, 1961.
M. The first woman to orbit the earth was Valentina Vladimirovna Tereshkova, who was lauched in Vostok VI from Tyura Tam, USSR, at 9:30 am on June 16, 1963. She returned on June 19, 1963, after completing over 48 orbits ($1,225,000$ miles).
N. The Voyager aircraft was the first to circumnavigate the globe without refueling. It completed its flight in December, 1986.

Date (rank)
H. 1784 (1)
\qquad

USE YOUR RULER TO MATCH EXPRESSIONS ON THE LEFT WITH THE SAME VALUE ON THE RIGHT.

THE LETTERS WHICH DO NOT HAVE A LINE THROUGH THEM CAN BE USED TO SDELL OUT THE NAME OF ONE OF THE PLANETS

It will take approximately 22,000 hours to get to this planet, traveling at 17,500 miles per hour. Calculate the approximate distance of this planet
from the sun.

Name \qquad

USE YOUR RULER TO MATCH EXPRESSIONS ON THE LEFT WITH THE SAME VALUE ON THE RIGHT.

THE LETiERS WHICH DO NOT HAVE A LINE THROUGH THEM CAN BE USED TO SPELL OUT THE NAME OF ONE OF THE PLANETS

It will take ayproximately 22,000 hours to get to this planet, traveling at 17,500 miles per hour. Calculate the approximate distance of this planet
from the sun.

Meeting Our Neighbors...Planets Near and Planets Far
Meeting Our Neighbors...Planets Large and Planets Small How Far is Pluto?...How Near is Mars?
Let's Pretend...
Let's Extend...Bringing the Planets Down to Earth's Scale
Let's Try It. . Travelling on Earth
Let's Fly H....Tiavelling in Space

MEETING OUR NEIGHBORS... PLANETS NEAR AND PLANETS FAR

Preparation/Materials

- Review "All You Noed to Know About the Solar System" in the Fact Book
- Reviaw "Rounding" in the Fact Book
"How Far Away Are The Planets?"
- "Summary of Facts", Fact Book
- Graph Paper
- Planet Cards (Optional)

Math Skills
- Rounding and Comparing Large Numbers
- Graphing Data

During Class:

- Brainstorm with the students about the number of planets, their names, and their distances from the sun. Distributing the Planet Cards to students may invite interesting discussion.
- Discuss why you round and how to choose an appropriate rounding place.
- Look up, record, and round" the distances of the planets from the sun, using "Summary of Facts" in the Fact Book.
- Advise students to save the "Summary of Facts" for work in later lessons.
- After rounding the distances, order the planets and record them in terms of their distances from the sun.
- Draw a bar graph of the rounded distances of the planets from the sun.
- Discuss:
- Which planet is the farthest from the sun?...the closest to the sun?
- Which are the so called outer planets? (Jupiter, Saturn, Uranus, Neptune, and Pluto)...the inner planets? (Mercury, Venus, Earth, Mars)
- There is speculation that there may have orce been a tenth planet. Where might it have been?...Why?
- Is there any airin space?**
- Is it hot in space?..Is it cold?**

Extensions

- "How Hot is it?"
- Create a mnemonic to represent the order of the planets: My Yery Educated Mother Just Served Us Nine Eizzas
- Exponential and Scientific Notation
* Indicates that there are specific Teaching Approaches in the Math Facis section of the Fact Book.
** These questions and other interesting points are discussed in the Solar System Data Section of the Fact Book.

Ne:me \qquad

HOW FAR AWAY ARE THE PLANETS FROM THE SUN?
(Use the table of Approximate Distances Between Planets in Fact Book)

Planets in Order	The Distance of the Planets from the Sun (in miles)	Rounded Distance from the Sun (in millions of miles)

1. Which are the three warmest planets? Iupiter, Mercury, Venv s 2. Which is the coldest planet? PIuto
2. Are the planets that are closest to the sun the hottest? No, Jupiter
3. Which planet has the greatest range of temperature? Jupiter
4. What is the range of temperature on Earth? -126.9 to $136.1=263.3$ 6. On which planets do the highest and lowest temperatures vary about 300\%? change

Mars and Earth

Name

HOW HOT IS IT?

	MAXIMUM TEMPERATURE	MINIMUM TEMPERATURE
Mercury		
Venus		
Earth		
Mars		
Jupiter		
Saturn		
Lי יs		
h re		
Pluto		

1. Which are the three warmest planets?
2. Which is the coldest planet?
3. Are the planets that are closest to the sun the hottest?
4. Which planet has the greatest range of temperature?
5. What is the range of temperature on Earth?
6. On which planets do the highest and lowest temperatures vary ahout 300° ?

MEETING OUR NEIGHBORS. PLANETS LARGE AND PLANETS SMALL

Preparation/Materials

- "How Big Are The Planets?"
- Fact Book - Planets Summary of Facts
- Graph Paper
- Planet Cards (Optional)

Math Skills

- Rounding and Comparing Large Numbers
- Graphing Data

During class:

- Use the Fact Book to look up and record the diameters of the planets. Discuss the wide range of sizes of the diameters and therefore of the planets themselves.
- Round the diameters to the nearest thousand and compare the planets in terms of the sizes of their diameters.
- Graph the rounded diameters on a bar graph.
- Discuss:
- Which planet is the largest?...the smallest?
- Which planets are about the same size?
- Is there a relationship between the diameter of a planet and the speed at which it is travelling in its orbit?

Extensions
 - "How Fast?!"
 - Problem Cards: \#3, 4

OUR SOLAR SYSTEM

	Diameter (in miles)	Rounded Diameters (in thousands of miles)
Mercury		
Venus		
Earth		
Mars		
Jupiter		
Saturn		
Uranus		
Neptune		
Pluto		

\qquad

\qquad

HOW BIG ARE THE PLANETS?

OUR SOLAR SYSTEM

	$\begin{aligned} & \text { Draminer } \\ & \text { (in miles) } \end{aligned}$	Aounded Diamoters (in thoweands of miles)
Mercury	3031	3 thousand
Vonus	7521	8 thousand
Earth	7921	8 thousand
Mare	4197	4 thousand
Juplter	88,733	89 thousand
Saturn	74,600	75 thousand
Uranus	31,600	32 thous and
Neptune	30,200	30 theysand
Pluto	2113	2 thousand

Orbital speed is the speed at which a planet travels in its ORBIT AFOUND THE SUN.

	Orbital Speed iM.P.H.	Rounded Speed in thousands of M.P.H.
Mercury	107,300	107,000
Venus	78,500	79,000
Earth	66,500	66,000
Mars	54,100	54,000
Jupiter	29,300	29,000
Saturn	21,600	22,000
Uranus	15,300	15,000
Neptune	12,200	12,000
Piuto	10,600	11,000

1. Which planer's orbital speed is....

> fastest?... Mercury slowest? Pluto more than earth's? Venus, Merevr.
2. Graph the speeds of the planets on a bar graph.
3. The length of a planet's year is th.e time it takes that planet to orbit once around the sun.

Mercury's year is 88 days. It takes 88 days for Mercury 10 orbit the sun. The distance travelled by Mercury during one orbit is about 220,000,000 miles.

[^0]\qquad

ORBITAL SPEED IS THE SPEED AT WHICH A PLANET TRAVELS IN ITS ORBIT AROUND THE SUN.

	Orbital Speed in M.P.H.	Rounded Speed in thousands of M.P.H.
Mercury		
Venus		
Earth		
Mars		
Jupiter		
Saturn		
Uranus		
Neptune		
Pluto		

1. Which planet's orbital speed is.....
fastest?
slowest?
more than earth's?
2. Graph the speeds of the planets on a bar graph.
3. The length of a planet's year is the time it takes that planet to orbit once around the sun.

Mercury's year is 88 days. It takes 88 days for Mercury to orbit the sun. The distance travelled by Mercury during one orbit is about
\qquad .

HOW FAR IS PLUTO? HOW NEAR IS MARS?

Preparation/Materials

- Review "Calculating with Rounded Numerals" in the Fact Book.
- "How Far is Pluto?...How Near is Mars?"
- "Summary of Facts," Fact Book.

Math Skills

- Estimation in Computation

During class:

- Iritiucuuce the lesson by solving a problem with the class from "How Far is Piuto?...How Near is Mars?"
- Point out to students that we can simplify the calculations if we use rounded numerals. Explain that the solutions are approximate rather than exact. However, for the purposes of these questions, approximate solutions are sufficient.
- Ask students to work individually or in a group to solve the problems posed.
- You may want to allow some students to use a calculator in order to perform the calculations on the rounded numerals.

Extensions

- "Astronomical Units"
- "Learning More About Our Solar System"
- Problem Cards: \#2, 5, 6, 7, 8, 11, 12, 21, 25.
\qquad

Who am I?

1. I'm about 50 million miles further from the sun than the Earth.

I'm \qquad
2. I'm one billion fewer miles from the sun than Neptune.

I'm \qquad
3. My diameter is forty thousand miles larger than Uranus'

I'm \qquad diameter.
4. If Uranus, Neptune, Mars, Mercury, and Venus were placed I'm \qquad side by side, they would have a combined diameter the length of my diameter.
5. We are two planets whose diameters differ by about

We're \qquad 1,000 riiles.
6. I'm approximately 100 times as far from the sun as Miercury.

I'm \qquad
7. My orbital speed is twice as fast as Mars' speed.

I'm \qquad
8. Make up one yourself. Solve it.

I'm \qquad

What do you know about me?

9. I'm Mars.

How many times larger is my diameter than Earth's diameter? \qquad
10. I'm the planet nearest to the sun.

How much closer am I to the sun than Saturn? \qquad
11. I'm Mars.

How many times further from the sun is Jupiter?
12. I'm Earth.

Planets closest to me in size are...
Planets that are more than ten times further from the sun than I am are
13. I'm Uranus.

How many times faster must I travel to travel at the same orbital speed as Venus?

Make up your own
14. Use the back of this sheet to list the fact and question for your problem.

Name
 HOW FAR HOW NEAR IS PLUTO? IS MARS?

Who am I?

1. Im sbout 50 milifion miles turther from the aun than the Earth.
2. Im one blilion fewer miles from the sun than Neptune.
3. My dimeter is forty thousand miles larger than Uramis' ciameter.
\qquad
rm Mars
1 m Uranus
rm Saturn
H Uranus, Neptune, Mars, Mercury, and Vonus were placed side by side, they would have a combined diameter the length im Saturn of ny diember.
4. Wo aro two plandsts whose dameters diller by about 1.000 mliws.
5. Im approximenely 100 times as far from the sun as Mercury.
6. My orbital speed is 'wice as fast as Mars' speed.
B. Make up one yourself. Solve it.

What do you know about me?
9. Im Mars.

How many times larger is my diameter than Earth's diameten?
10. Im the planet noarest to the sun.

How much closer am I to the sun than Satum?
11. Im Mars.

How many times further from the sun is Jupiter?
12. Im Earth.

Planets closest to me in size are..
Planets that are more than ten tumes further from the sun than I am are
13 Im Uranus.
How many times faster must I travel to travel at the same orbital speed as Venus?
worio Mercury 8 Mas
rm Pluto
rm Mercury
rm \qquad

Make up your own
14. Use the back of this sheet to list the lact and question for your problem.
\qquad
HOW FAR IS PLUTO?... HOW NEAR IS MARS?...

15.	15.
Find the distance 7hrough the earth from the North to the South Pole. Write the distance in rounded lerms.	Actual - \qquad 7927 Rounded = 8000 \qquad ni
16. How many times farther away from the sun is Jupiter than Mercury?	16. ≈ 3.5 times
17. How many timess faither away from the sun is Pluto than Mars?	17 ≈ 26 times
18. Is the distance ol Neptune from the sun more or less than four times the distance of Jupiter from the sun? Show your reasoning.	18.
19. Each day about 5 million kilograms of cosmic dust settle on the earth's surface. A klogram is about 2.2 los Does more or less than ten tons of dust settie each day?	19.
Create a problem for a classmate	120

Regonal Math Notwork - Hanad Graduaxe Schoot ol Educ aiton - Hanverd Unmersty
\qquad
HOW FAR IS PLUTOT... HOW NEAR IS MARS?...

15.		15.
	Find the distance "through the earth"	
from the North to the South Pole.		
Write the distance in rounded terms.		

Name \qquad

ASTRONOMICAL UNITS

> THE DISTANCES IN SPACE ARE SO GREAT THAT SCIENTISTS NEED UNITS GREATER THAN MILES TO MEASURE OR DESCRIBE THEM.

THE UNIT THAT SCIENTISTS AGREED UPON IS AN ASTRONOMICAL UNIÏ (AU).

ONE ASTRONOMICAL UNIT IS EQUAL TO 93 MILLION MILES, THE DISTANCE R「-i WEEN THE EAFTiH AND THE SUN.

1. Comets spend most of their time in the Oort cloud, which stretches from 20,000 to 100,000 astonomical units from the sun.

Approximately how far away from the sun is the 'arthest comet? 9. 3 trille on adks Approximately how far away from sun is the cinsest comet? 1.86 trollion moles
2. Express the distances of the "outer" planets from the sun in terms of astronomical units:

Pluto: \qquad AU

Uranus: \qquad $A U$

Neptune:
 $A U$

Jupiter:
 $A U$

Saturn: \qquad AU
3. On a map of the universe, let one inch represent one AU.

How many inches would represent the distance from Jupiter to the Sun?

4. If one inch represents one AU, then 39.44 inches represents the location of what planet? \qquad
\qquad _.

ASTRONOMICAL UNITS

THE DISTANCES IN SPACE ARE SO GREAT THAT SCIENTISTS NEED UNITS GREATER THAN MILES TO MEASURE OR DESCRIBE THEM.

THE LINIT THAT SCIENTISTS AGREED UPON IS AN ASTRONOMICAL UNIT (AU).

ONE ASTRONOMICAL UNIT IS EQUAL TO 93 MILLION MILES, THE DISTANCE BETWEEN THE EARTH AND THE SUN.

1. Comets spend most of their time in the Oort cioud, which stretches from 20,000 to 100,000 astonomical units from the sun.

Approximately how far away from the sun is the farthest comet? \qquad
Approximately how far away from sun is the closest comet? \qquad
2. Express the distances of the "outer" planets from the sun in terms of astronomical units:

Pluto: \qquad AU

Uranus: \qquad AU

Neptune: \qquad AU

Jupiter: \qquad AU

Satum: \qquad AU
3. On a map of the universe, let one inch represent one AU. How many inches would represent the distance from Jupiter to the Sun?
4. If one inch represents one $A U$, then 39.44 inches represents the location of what planet? \qquad

LEARNING MORE ABOUT OUR SOLAR SYSTEM

Because we are often talking about stars in our solar system, we often think about the speed of light. The speed of light is 186,300 miles per second.

1. How many seconds are there in one year?

$$
\begin{aligned}
60 \mathrm{sec} & =1 \mathrm{~min} \\
3600 \mathrm{sec} & =1 \text { hour } \\
86,400 \text { sec } & =1 \text { day }
\end{aligned}
$$

$$
31,536,000 \text { sec }=1 \text { year }
$$

2. About how many miles are there in a lightyear?
(A lightyear is the number of miles light travels in one year.)

3. The next nearest star beyond the sun is about four light-years away from the sun. About how far is it in miles?

$$
\begin{array}{r}
6,000,000,000,000 \\
\frac{\times 4}{24,000,000,000,000} \mathrm{mi.}
\end{array}
$$

4. Our solar system is about 3×10^{5} light years away from the center of the Milky Way. About how far is this in miles?

$$
3 \times 10^{5}=30,000 \quad 6,000,000,000,000
$$

$180,000,000,000,000,000 \mathrm{mi}$

LEARNING MORE ABOUT OUR SOLAR SYSTEM

Because we are often talking about stars in our solar system,

 we often think abc ut the speed of light. The speed of light is 186,300 mlles per second.1. How many seconds are there in one year?
2. About how many miles are there in a light-year? (A light-year is the number of miles light travels in one year.)
3. The next nearest star beyond the sun is about four light-years away from the sun. About how far is it in miles?
4. Our solar system is about 3×10^{5} light years away from the center of the Milky Way. About how far is this in miles?

LET'S PRETEND...

Preparation/Materials
- "What if the Earth Were 1" in Diameter?"
- Sphere $1^{\prime \prime}$ in diameter
- Spheres of various sizes (Optional)

Math Skills

- Scale Drawing and Scale Models
- Ratio and Proportion
- Rounding and Comparing Large Numbers

During class:

- Pose the following question:
"If the earth is a sphere with a 1 " diameter, what size sphere could be used to represent the moon?...the sun?"
- Brainstorm with the class about techniques which couid be used to make a scale model of the moon and sun.
- Teach ratio techniques to make scale models, using rounded numerals to describe the diameters of the sun and moon.
- Introduce distance with the following question: Using the same scale of miles to inches and holding the earth in your hands, how far away would the sun and the moon be from you?
- Use objects in the environment to describe the sizes of and distances between the earth, moon, and sun so that they become real to the students. For example, if the earth were in the classroom, the moon wou'd be "at the drugstore."

Extensions

- "Think of "he Earth as a Ball"
- Problem Cards \#13, 15
\qquad

What would models of the sun and moon look like?

Diameter in miles:	Earth	Moon	sun
Rounded diameter inthousends of miles:			
scaled diameter:	1 "		

How far apart are they if $i^{\prime \prime}$ is about 8 thousand miles?

Distances between:	Actual	Rounded	Scaled (1" $=8000 \mathrm{mi})$
			NN.
Earth and Moon			Nr.
			in.
Earthatud Sun			Fr.

What would models of the sun and moon look like?

Diameter in miles:		Moon 2160	Sun
Rounded diamerer mintrainds of miles:	8000	2000	865,000
Sealed diameter:	$1 "$	$14^{\prime \prime}$	108"

How far apart are they if $1^{\prime \prime}$ is about 8 thousand uriles?

Distances between:	Actual	Rounded		
Earth and Moon	238,900	239,000	$\begin{aligned} & 30 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { Non } \end{aligned}$
Earthand Sun	92,900,000	93,000,000	$\begin{array}{r} 11,625 \\ 969 \end{array}$	$\underset{k r}{\text { N. }}$

[^1]\qquad

THINK OF THE EARTH AS A BALL

Think about the Earth, Moon and Sun in terms of balls we know.

(3) м muno aus Diameter is abour 2.2"	60 rave m Diameter is abour 2.5"	campreat Diameler is about 96 *
(1) 4trinch Dismeter is about $2 . \mathbf{b}^{\prime \prime}$	Diameter is atract ot 0^{*}	anot pur Duanceser is abour 49"
corf eall Diemeter is aboutr 1.7^{*}	wherean Diameter sa abour 8.8"	pinneter is abour $0.6^{\prime \prime}$

(Note dimensions are correct, but proportions of drawnyss are tot to seale.)

If :		It would look tike:
Earth were a soccer ball...	the Moon's approximate diameter would be 3.3".	billiard ball
Earth were a baskethall...	the Moon's approximate. diatricter would be 2. ${ }^{\text {a }}$."	tennis ball
Moon were a billiasd ball.	the Earth's approximate. diameter would be Pl.	volley ball
Eurth were a gout ball ...	the Sun's approximate diameter would be 185 :.	
Earth werea \qquad spacer	the Moon's approximate dimeter hould be 2.4*:	-

THINK OF THE EARTH AS A BALL

Think about the Earth, Moon and Sun in terms of balls we know.

(Note: dimensions are correct, but proportions of drawings are not to scale.)

LET'S EXTEND... BRINGING THE PLANETS DOWN TO EARTH'S SCALE

Preparation/Materials

- "Sizing Up the Planets"
- "Create a Model of theSolar System"
- Review Fact Book - Summary of Facts
- Sphere 1 " in diameter
- Spheres of Various Sizes (Optional)

Math Skills

- Rounding and Comparing Large Numbers
- Scale Drawing and Scale Models
- Ratio and Proportion

During class:

- Pose a challenge to the students:
"Can we build a modei of the solar system in our school?"
- Holding a ${ }^{1 \prime}$ sphere, ask the students:
"If the earth were a $1^{\prime \prime}$ sphere like this, what would the size of the other planets be and where would they be located?"
- Determine the size of spheres needed to represent the other planets, using ratio and proportion techniques. Record the results on "Sizing Up) the Planets."
- Find the scaled distance each planet would be from the sun. Record the results on "Create a Model of the Solar System."
- These activities are quite time consuming if each student completes each task individually. To assemble the data more quickly:
- Divide the class into nine groups, with each group responsible for one planet.
- Assign portions of the task for homework.
- Discuss the fact that distances are too large to be translated into meaningful terms because they are bigger than distances we know.
- Brainstorm other ways to express distance. Encourage the students to think of distances in terms of the time it takes to travel.

Extensions

- Compare the relative locations of the planets to locations in the community. For example, if the sun were in the classroom, Mercury might be at the drugstore and Pluto in the next town.
\qquad

SIZING UP THE OTHER PLANETS

DIAMETER			
	(in miles)	Rounded (in thousands of miles)	Scaled
Mercury			
Venus			
Earth			1 "
Mars			
Jupiter			
Saturn			
Uranus			
Neptune			
Pluto			

Name \qquad

DIAMETER			
	(in miles)	Rounded (in thousands of miles)	Scaled
	3031	3000	$3^{\prime \prime}$
Merc': ;	7521	8000	$1^{\prime \prime}$
Venus	7927	8000	1
Earth	4197	4000	$\frac{1}{2}^{\prime \prime}$
Mars	88,733	89,000	$11^{\prime \prime}$
Jupiter	74,600	75,000	$9^{\prime \prime}$
Saturn	31,600	32,000	$4^{\prime \prime}$
Uranus	30,200	30,000	$3,8^{\prime \prime}$
Neptune	300	$\frac{1}{4}$	
Pluto	2113	2000	

CREATE A MODEL THE SOLAR SYSTEM

How far are the moon and sun from the earth, if $1^{1 "}$ represents a distance 8,000 miles?

Distance between	in Miles	Rounded in Millions of Miles	Scaled $\left(1^{\prime \prime}=8000 \mathrm{mi}.\right)$
Earth and Moon	238,900	.2	30
Earth and Sun	$92,963,145$	$93,000,000$	$11,625^{\circ \rho}$

How far from the Sun are the other planets? (Use the table of Approximate Distances Between Planets in Fact Book)

DISTANCE FROM SUN			
	in Miles	Rounded in Millions of Miles	$\begin{gathered} \text { Scaled } \\ \left(1^{n}=8000 \mathrm{ml} .\right) \end{gathered}$
Mercury	35,980,103	36,000,000	4500*
Venus	67,210, 115	67,000, 000	8375*
Mars	141, 642,351	142,000,000	17,7504
Jupiter	483,625, 103	484,000,000	60,500"
Saturn	810,613,004	891,000,000	11.375*
Uranus	1,782,020,003	1,782,000,000	222,750"
Neptune	2,794,444,010	2,794,000,000	349,250\%
Pluto	3,654, 410,041	3,654,000,000	456, 750*

How far are the moon and sun from the earth, if 1 " represents a distance of 8,000 miles?

Distance betv:een	in Miles	Rounded in Millions of Miles	Scaled $\left(1^{n}=8000 \mathrm{mi}.\right)$
Earth and Moon			
Earth and Sun			

How far from the Sun are the other planets? (Use the table of Approximate Distances Between Planets in Fact Book)

DISTANCE FROM SUN			
	in Miles	Rounded in Millions of Miles	Scaled $\left(1^{n}=8000 \mathrm{mi}.\right)$
Mercury			
Venus			
Mars			
Jupiter			
Saturn			
Uranus			
Neptune			
Pluto			

> LET'S TRY IT... TRAVELLING ON EARTH

Preparation/Materials

- "Let's Take a Trip"
- Globe
- Calculators (Optinnal)

Math Skills

- Use of formula: D = RT
- Circumference
- Conversion of Units

During class:

- Describe various modes of travel:
- walking, average speed 4 mph ;
- bicycling, average speed 10 mph ;
- automobile, average speed 55 mph ;
- jet, 650 mph .
- Using a globe explore various paths to travel "around" the earth. Point out that the distance at the equator represents a reasonable length for us to consider as the length of our trip "around" the earth.
- Define distance around the earth as the circumference of the great circle of the equator and review the formula for circumference of a circle,

$$
\begin{aligned}
\text { CIrcumference } & =\pi \text { times Diameter } \\
\mathbf{C} & =\pi \mathbf{D}
\end{aligned}
$$

- Discuss informally the relationship of

Distance $=$ Rate times Time.

$$
\mathbf{D}=\mathbf{R T}
$$

- Ask students to find the length of the trip they are to travel "around" the earth and then calculate how long it would take using one of the vehicles described.
- Encourage the students to use rounded numerals for distances and to express their solutions in approximate terms.

Extensions

- Compute and compare the times of trips using various modes of transportation. The Fact Book includes Measurement Trivia, which includes other speeds of interest.
- "Nore Trips"
- Problem Card \# 20
- Joumal Entry: Write about your trip around the earth, the vehicle you chose, what you saw, problems you met.
\qquad

LET'S TAKE A TRIP

How Long Will It Take?

	Average Speed			
	Walking 4 mph	Bicycling 10 mph	$\begin{aligned} & \text { By Car } \\ & 55 \mathrm{mph} \end{aligned}$	By Jet 650 mph
A Trip to California's Disneyland from Boston Distanse = 3294 mi.				
A Trip "around" Earth Distance $=25,120 \mathrm{mi}$.				
A Trip "around" Moon Distance = 6,280 mi.				
A Trip "around" \qquad with Distance $=235,000 \mathrm{mi}$. The planet is:				
Your Choice: A Trip "angund" with Distance "around" it =				

SOME USEFULFORMULAE
 $\mathrm{C}=\pi \cdot \mathrm{D}$
 Circumference $=\pi$ times Distance

$D=R \cdot T$
Distance $=$ Rate times Time

LET'S TAKE A TRIP

\qquad

How Long Will It Take?

	Ave age Speed			
	Walking 4 mph	Bicycling 10 mph	$\begin{aligned} & 8 y \mathrm{Car} \\ & 55 \mathrm{mph} \end{aligned}$	$\begin{aligned} & \text { By Jet } \\ & 650 \mathrm{mph} \end{aligned}$
A Trip to Calitomia's Disnoyland from Boston Distance = 3294 ml .	$\approx 824 \mathrm{hr}$	329 hrs.	$60 \mathrm{hrs}$.	5 hrs.
A Thip "around" Earth Distence $=25,120 \mathrm{ml}$.	6280 hrs.	2512 hrs	457 hrs.	391 rs.
A Trip "around" Moon Distance $=6,280 \mathrm{mi}$.	1570 hrs.	628 hes.	114 hrs.	9.6 hes.
A Trip "arounc" \qquad with Dlatance = 235,000 ml. The planet is: Satuen	58,750 hre	23,500 has	4273 ls	361.5her
Your Choice: A Trip "around with Distence "around' t =				

SOME USEFULFORMULAE
$D=R \cdot T$ Disterce e Rale times Time

Name \qquad
MORE
TRIPS....

	Orbiter Speed= 25,780 m.p.h.	US/German Oditer Speed = 149,125 m.p.h.	Lght Speed. $186,000 \mathrm{~m} . \mathrm{p} \mathrm{sec}$
A Trip to California's Disngyland from Boston Distance = 3294 mi.	13 hrs	.02 hrs.	.02 sec.
A Trip "around" Earth Distance = 25,120 mi.	. 97 hrs.	. 17 hrs.	.14 sec
A Trip "around" Moon Distance $=\mathbf{6 , 2 8 0} \mathrm{mi}$.	$.24 \mathrm{hrs}$.	. 04 hrs.	. 03 sec .
A Tnp "arouno" \qquad with Distance = 235,000 mi. The planet is:	9 hrs	1.6 hrs.	1.3 sec.
Your Choice: A Trip "around" with Distance "around" it =			

SOME USEFULFORMULAE
Cor.D
Circumberence a x limes Distance

Diftance - Rate times Time

\qquad

MORE

 TRIPS....| | Orbiter Speod= 25,780 m.p.h. | US/German Orbiter Speed = 149,125 m.p.h. | Light Speed= 186,000 m.p.sec. |
| :---: | :---: | :---: | :---: |
| A Trip to Califomia's Dist ieyland from Boston Distance $=3294 \mathrm{mi}$. | | | |
| A Trip "around" Earth Distance $=25,120 \mathrm{mi}$. | | | |
| A Trip "around" Moon Distance $=6,250 \mathrm{mi}$. | | | |
| A Trip "around" \qquad with Distance $=235,000 \mathrm{mi}$. The planet is: | | | |
| Your Choice:
 A Trip "around" with Distancs "around" it = | | | |

SOME USEFULFORMULAE
$\mathrm{C}=\pi \cdot \mathrm{D}$
Circumference $=\pi$ times Distance
$D=R-T$
Distance = Rate times Time

LET'S FLY IT... TKAVELLING IN SPACE

Preparation/Materials
- "Letrs Send Jesse to Pluus"
- "Summary of Facts", Fact Book
- "Distances Between Planets"

Math Skills

- Use of Formula: $\mathrm{D}=\mathrm{RT}$
- Con'rersion of Measures

During class:

- Pose the challenge:

"Let's send Jesse to Pluto. How long will it take, if he is travelling in his anti-gravity VW bus at 55 mph ?"
- Encourage students to work in groups.
- Help particular groups, if necessary, to recognize the tools they need to find a solution: using a table to find distances; rounding distances; $\mathrm{D}=\mathrm{RT}$ relationship; and conversion of units of time. Describe possible solution strategies and steps.
- Discuss the intriguing dilemmas of space travel:
- Time is the dilemma of long trips 'n spaco; planets constantly move in their orbit so the relative distance is always changing;
- Trips in space must be planned to reach the location where the planet will be when the space ship arrives;
- Space flights such as the Voyager plan for such "windows" of opportunity so that the course is calculated as the spacecratt flies rather than when the spaczeraft takes off.

```
Extensions
- "Let's Fly lt"
- "Inter-Planetary Space Agency"
- Choose a f.dnet, collect information about it and imagine a
    "creature" who lives there. Plan a trip to the planet, including
    distance travelled, speed of travel, and length of trip.
- Problem Cards: #1, 9, 10,16,17,23
```


Let's send Jesse to Pluto Maybe he'll find intelligent life out there!

As a pre-flight trial, Jesse takes a test flight to the moon.
If he travels in his anti-gravity VW at 55 mph , how long will it take to get to the moon? Remember that the moon is 238,900 miles from the earth.

The test flight was a success.
How long will it take Jesse to travel from Earth to Pluto?

告

Let's send Jesse to Pluto Maybe hell find intelligent life out there!

As a pre-fight trial, Jesse takes a test flight to the moon.
If he travels in his anti-gravity VW at 55 mph , how long will it take to $g \in$. to the moon? Remember that the moon is 238,900 miles from the earth.
The test flighi was a success. $\frac{240,000}{55}=4363$ hours ≈ 182 days
How long will it take Jesse to travel from Earth to Pluto?

$$
\frac{3,560,000,000}{55} \times 65,000,000 \text { hars } \approx 2,700,000 \text { days }
$$

Name \qquad

LET'S FLY IT TRAVELLING IN SPACE

We are now in a synodic period. That is, all planets are "lined up." The distances between planets during a synodic period are pictured and recorded in the Fact Book.

How long is a trip from...	Time of trip at shuttle speed 17,500 m.p.h.	Time of trip at US/German Orbiter speed 149, 125 m.p.h.	Time of trip at speed of light $186,000 \mathrm{mi} / \mathrm{sec}$.
Earth to Moon? Distance = $238,900 \mathrm{mi}$.	$13.6 \mathrm{hrs}$.	1.6 hrs.	1.3 sec.
Earth to Mars? Distance $=$ 48,679,236 mi.	2782 hrs.	326 hrs.	262 sec.
Earth to Pluto? (Jesse's Trip) Distance $=$ 3,061,446,976 mi.	203, 486 hay	$\times 23,880$ hos	$19,145 \mathrm{sec}$.

1. Suppose your trip had the following tinierary: From Earth to the Moon to. Mars, and then home. How far would you travel? $\approx 97,00,000 \mathrm{me}$.
Traveling at the speed of the Orbiter, how long would the trip take?

$$
\approx 3774 \text { hrs. }
$$

2. Plan a trip in the solar system. You'll start from Earth and visit three planets. On the back of this sheet, list the three planets, the total distance travelled, your speed and how long you will be away.

Name \qquad

LET'S FLY IT TRAVELLING IN SPACE

We are now in a synodic period. That is, all planets are "lined up." The distances between planets during a synodic period are pictured and recorded in the Fact Book.

How long is a trip from...	Time of trip at shuttle speed 17,500 m.p.h.	Time of trip at US/German Orbiter speed 149,125 m.p.h.	Time of trip at speed of light $186,000 \mathrm{mi} / \mathrm{sec}$.
Earth to Moon? Distance $=$ 238,900 mi.			
Earth to Mars? Distance $=$ 48,679,236 mi.			
Earth to Pluto? (Jesse's Trip) Distance = $3,561,446,976 \mathrm{mi}$.			

1. Suppose your trip had the following itinierary: From Earth to the Moon to Mars, and then home. How far would you travel? \qquad
Travelling at the speed of the Orbiter, how long would the trip take?
2. Plan a trip in the solar system. You'll start from Earth and visit three planets. On the back of this sheet, list the three planets, the total distance travelled, your speed and how long you will be away.

INTER PLANETARY SPACE AGENCY

MODULE III: THE SPACE SHUTTLE
The First Step of the Journey
Leaving Earth...Its Atmosphere and Beyond All Aboard
The Shuttle...Let's Make It Creative Blast-Off (Optional) Orbiter Specs
"Sure It's Big...But Compared to What?"
Planning for Life on Board...Let's Eat
Planning for Life on Board...Let's Work
Planning for Life on Board...Let's Experiment
3,2,1 Blast-Off
Toys in Space (Optional)

LEAVING EARTH...
 ITS ATMOSPHERES AND BEYOND

Preparation/Material

- Attach a string or tape from floor to ceiling in classroom.
- "Leaving Earth..."
- String
- Topological Maps (Optional)

Math Skills

- Graping Data
- Scale Models and Scale Drawing

During class:

- Ask students to locate a position on the string to indicate a proper altitude for the intercontinental flight of a jumbo jet aircraft. Students must decide an appropriate scale to use to locate a scaled height for the jet and to fit data given on chart.
- Discuss the many questions that arise:
- What is the cruising altitude for a single engine prop plane? (approximately 2000')
- ...for an executive jet? (approximately $15,000^{\prime}$)
- ...for a regularly schedule jet airliner? (approximately 30,000')
- Mark the height of the jumbo jet and then ask: "At what level did the X - 15 fly? Plot it on the string."
- Ask students to plot the position on the string to indicate the end of the troposphere, the stratosphere, the mesosphere, and thermosphere.
- Locate on the string the Mer_ury mission... The space shuttle... Apollo 9... Skylab.

Extensions

- Look up the origin and meaning of "tropospphere," "stratosphere," etc.
- Explore Topological maps and how they represent heights.
- Plot height of local landmarks on string: Prudential Building, Blue Hills, Mount Washington.

Name \qquad
Suppense you were making a scale model of atmospheric activity.
Attach a string from the floor to the ceiling. The floor represents Earth.
What height on the string would represent each level of activity if 1^{11}
represents 3 miles?

	ACTUAL HEIGHT	HEIGHT ONSTRING
MOUNT WASHINGTON		
MOUR. EVEREST TROPOSPHERE (FROM \qquad		
GEOSYNCHRONOUS ORBIT: The orbh whose speed is the sarne as the eatth's, so that objects ina stay in thetr same relative posidon when viewod trom earth	$21,400 \mathrm{mc}$	
STRATOSPHERE (FROM то \qquad		
MESOSPHERE (FROM \qquad TO \qquad		
THERMOSPHERE The renge where most current space activily hus occurred. (FROM. TO \qquad \qquad		
EXOSPHERE Proposed location ior Skylab (FROM TO \qquad		

ALL ABOARD

Preparation/Materials

Math Skills

- Select a Media Experience
- Coordinate Graphing
- Review "All You Need to Know About the Shuttle," in the Fact Book.
- "Mission Control"

During Class:

- Brainstorm with the students about the shuttle, shuttle missions and people who work on projects associated with the shuttle program.

This discussion will provide a rich and interesting introduction to this module. A script for discussion which can be used with or without slides follows. Additional information about slides is available in the bibliography.

- Introduce the shuttle and shuttle missions using models, pictures and overheads found in the Fact Book.
- Discussion Questions:
- How large do you think the shuttle is?
- How fast does it "go"?
- What's it like insid! ${ }^{\text {? }}$?
- What ni ist in feel like, looking out?
- Would you like to ride in it?
- What would you like about such a niae?
- What would you dislike about such a nide?

Extensions

- "All Aboard Coordinate Puzzle"
- Journal Entry:
- If NASA called today, you would...
- If you could only take one thing on the shuttle mission, what would it be?
- Why might you not want to go?
- Ask teams of students to select a specific shuttle mission, researich it and report to the class.
\qquad

MISSION CONTROL

During each shuttle mission, specialists and technicians at Johnson Space Center in Houston monitor all aspects of the astronauts' activities.

THE CHART ON THE LEFT SHOWS A PORTION OF THE SEATING PLAN AT MISSION CONTROL WITH THE NAMES OF THE SPECIALISTS ON DUTY.
in this seating plan, dave SITS IN THE THIRD ROW, SECOND SEAT. THE NUMBER PAIR, $(3,2)$ LOCATES DAVE'S POSITION.

1. WHO OCCUPIES THE SEAT NAMED BY THE NUMBER PAIR (2,3)?
2. LOCATE THE POSITIONS OF THE FOLLOWING SPECIALISTS:
a. EVA \qquad c. ROY \qquad e. DCT
b. $B O B$ \qquad d. JOHN \qquad f. INA
\qquad
\qquad
3. NAME THE SPECIALISTS WHOSE POSITIONS ARE NAMED BY THESE NUMBEIZ PAIRS:
a. $(4,3)$ \qquad c. $(6,3)$ \qquad e. $(5,2)$
b. $(1,5)$ \qquad d. $(3,5)$ \qquad f. $(2,6)$ \qquad
4. WRITE NUMBER PARSF R. AH SPIMCLALISTS SITTING IN THE THIRD RON:
5. NAME THOSE SPECIALISTS WHOSE LOCATIONS ARE DESIGNATED BY NUMBER PAIRS SUCH THAT THE FIRST COORDINATE IS 2 MORE THAN THE SECOND COORDINATE.

MISSION CONTROL

During each stuutte mission, specialists and technicians at Johuson Space Center in Houstom nooritor all aspects of the astronauts' activitics.

1. WHO OCCUPIES THE SEAT NAMED BY THE NUMBER PAIR $(2,3)$?
NOTA.
2. Locate the positions of the following specialusts:
a. EVA 2,5 c. ROY $\frac{4,2}{6,4}$
e. DOT \qquad
b. $B O B$ 5,5 d. JOHN 6,4
f. INA
3. mame the spacialists whose positions hre named oy these number pairs:
a. $(4,3)$ Eeth
c. $(6,3)$ \qquad
\qquad e. $(5,2)$ Jce
b. $(1,5)$ Tom. d. $(3,5)$ Gil \qquad f. $(2,6)$ \qquad
4. WRITE NUMBER PARS FOR ALL SPMCHLLSTS SITTING IN THE THIRD RON: $(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$
5. NAME THOSE SPECLALSTS WHOSE LOCATIONS MEE DESIGNATED OV NUMBEL PAIRS SUCH THAT THE FIRST coordinte is 2 MORE THAN THE SECOND COORQinate.
Ponl $(3,1)$ Roy $(4,2)^{\text {Gus }(5,3) ~ J o h n ~}(6,4)$

Regronal Math Nowwork - Harverd Gradume Schot of Education - Harvard Unworsily

	$\begin{aligned} & N \\ & N \\ & \substack{0 \\ 3 \\ \hline} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { z } \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{n}{2} \end{aligned}$	0 0 0 ∞ ∞ x	
$\begin{aligned} & \infty \\ & 0^{\infty} \\ & \mathbf{3}^{0} \\ & + \end{aligned}$	$\begin{aligned} & \text { A } \\ & \mathbf{\infty} \\ & \mathbf{w} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & \frac{n}{y} \\ & j \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \mathbf{s}^{\prime} \end{aligned}$	$\underset{\substack{n \\ \mathbf{w} \\ 3 \\ \hline}}{ }$	$\begin{aligned} & 18 \\ & \stackrel{5}{5} \end{aligned}$	少	\%

ALL ABOARD DISCUSSION SUGGESTIONS

The following dialogue presents an introduction to the vanious aspects of the current space shuttle system. The dialogue can either be read directly or embellished upon, depending upon the individual teacher's style. The dialogue does not depend upon the use of the slides. However, an effort has been made to suggest the slides that could accompany the respective dialogue.

Slide Description

Dialogue

1) Gemini rocket launch
2) Apollo 11 astronaut on the moon
3) Apollo 11 astronaut descending lienar modiule ladder
4) Astronaut Bob Crippen on treadmill
5) Astronaut Bob Crippen floating in cabin
6) Astronaut Ron McNair playing saxophone
7) Bruce McCandless in Manned Maneuvering Unit
8) Unknown astronaut ready for medical experiments
9) Astronaut Sally Ride
10) Onion Nebula
11) Earth viewed from space

The next topic in our investigation of outer space is spaceships: rockets with specially designed space capsules which allow astronauts to travel th. ugh space. The farthest any human has travelled until now is the moon. In 1969, three men landed and walked on the surface of the moon. lí took them three days to travel to the moon and they spent only 21 hours on the moon surface; in all, they spent 8 days, 3 hours and 18 minutes in space.

Astronauts come in all shapes and sizes. Some are runners, some are floaters, some are black, some are white, some are men, some ara women. NASA (National Aeronautics and Space Administration) is the US space agency which selects astronauts for space missions. According to NASA here are some of the requirements for being an astronaut:

* under 6 feet tall
* excellent physical condition
* college degree
* three years work experience

The oi,e thing all astronauts have in common is their curiosity about outer space. They are fascinated by it. They wonder what is out there on those little twinkling dots of light. Is there life on them? Is there a planet like Earth? How did those stars get there? Their questions are endless. Their curiosity drives them to search for the answers.
12) Whirpool galaxy in Canes Venatici
13) Tans Nebula
14) Shuttle main engine ignition
15) Shuttle Challenger in orbit
16) Apollo 11 launch
17) Shuttle Columbia landing at Edwards Air Force Base in Calif.
18) Shuttle Columbia on launch pad

And one of the reasons why space is so interesting is that it is a virtual time machine. When we look at the stars in the sky we are looking back in time. The sun is 93 million miles away from Earth. This distance is so great that it takes the light from the sun 8 minutes to get here. So when we look at the sun in the sky, we are really seeing light that is 8 minutes old - or we are seeing the sun as it was 8 minutes ago. The nearest star to Earth is trillions of miles away and it takes the light from that star many thousands of years to get here. So when we look at the star in the night sky, we are seeing the star as it was thousands of years ago. We are looking back in time. Mathematicians, scientists, and astronomers hope that by travelling in space to distant planets and stars we can answer the fundamental questions about the forming of the universe.

The Space Shuttle was built to travel to outer space. However, the shuttle has one large limitation: it cannot travel to other planets - not even to the moon - because of the limited amount of fuel it can carry. In the futu: , NASA hopes to modify the shuttle to be able to travel to other planets, but for now the shuttle only operates in Earth orbit.

The shuttle was built for one major reason: to make space travel worth the money. In the 1960's, NASA built the Apollo space craft to take men to the moon. The cost of one Apollo space ship was about 2 million dollars. One Space Shuttle costs 3 million dollars and takes over 2 years to build. But unlike the Apollo, the shuttle was designed to travel into space 100 times; the Apollo only once. Since the shuttle can go into space more than once, the cost of each flight is cheaper than ever before.

As the shuttle sits on the launch pad, you can see the three mein parts of the shuttle system: the shuttle itself (called the ORBITER), the large extemal tank below the orbiter, and the two solid rocket boosters strapped to the sides of the external tank.

The shuttle system might not look too big when you look at this slide. In fact, the shuttle is one of the shortest space cratts ever built. The total length of the system from the bottom of the booster rockets to the top of the external tank is 184 feet. The Pruduntai Building in downtown Boston is over 800 feet tall and has 50 stories in all, which means the shuttie is about the height of a 13 stc. f building.
19) Shuttle Columbia launch

Astronaut in pilot monitors can be seen in front of the astronaut)

The Solid Rocket Boosters (SRB's), the tall white rockets on the side of the large tank, provide the majority of the thrust needed to get the shuttle off the ground. The combined thrust of the SRB's is over $6,000,000$ lbs., which is enough thrust to got 25 jumbe 747 jot airliners oft the ground. Imagine all of this power from rockets that are only 12 feet in diameter.

The extemal tank, the large tank under the orbiter, is essentially a big gas tank. The purpose of the tank is to hold the liquid fuel for the 3 main rocket engines on the back of the orbiter. And when we say this is a big tank we mean a BIG TANK : at lift-off it contains 140,000 gallons of liquid hydrogen and 380,000 gallons of liquid oxygen - a combined total of 520,000 gallons of liquid tuel enough to fill 18 swimming pools.

One of the most irteresting aspects of a shutle launch is the countdown. But have you ever stopped to think why we need a countdown? Why don't we just count to 3 and say "Go"? Well the shuttle countd wn starts long before the count of 3 ; in fact it begins 40 hours before launch. The countdown is needed to coordinate all of the complex shuttile launch systems.

seat (computer

On board the shuttle, there are 4 computers that control the final stages of the countdown. All the computers work independently of each other making the calculations needed for launch. As a saiety precaution, all of the computers cross check their operation with one another and if they do not agree, the launch is stopped. And these computers are not your ordinary pocket calculators:
21) Shuttle Columbia main engine start
22) Shuttle Columbia launch
23) Shuttle Columbia above clouds during ascent
24) Drawing of SRB separation
25) Drawing of shuttle and external tank before tank separation
26) Drawing of shuttle in orbit (earth below)
27) Drawing of shuttle in orbit
they are so fast in making calculations that they can perform 35,000 operations in one second. For example, the computers on the shuttle can add 2 and 2 35,00ú ümes in one second.

Three seconds before launch, the computer starts the three main engines on the back of the orbiter. They are started one at a time, only $2 / 3$ of a second apart. (The reason for this is to avoid build-up of pressure due to the firing of the engines.) It takes only 3 seconds for the engines to throttle up to 90% power.

At T minus 0 seconds, the SRB's are ignited. Once the SRB's are turned on, there is no turning back; they cannot be turned off. In less than one minute, the shuttle will be travelling faster than the speed of sound - nearly 800 miles per hour. Two minutes after launch, the SRB's are expended and jettisoned. Six minutes later (or 8 minutes after launch), the external tank is empty and likewise jettisoned. Now the shuttle has enough height to be in orbit around the Earth, 100-150 miles up in space.

Once the astronauts are in orbit, they begin a number of activities and experiments. These activities vary from flight to flight. However a large part of the activities the astronauts perform are exactly the same as many of the everyday tasks we do here on Earth. For instance in each 24 hour period of activity, there is a scheduled 8 hour sleep period. But how do you sleep in space? You cannot go to bed, because there is no bed on the shuttle. There is really no need to lay your head down on a pillow, because it floats in space. If you wanted, you could sleep in space by simply floating in the air and closing your eyes. Remember, being in weightlessness means there is absolutely no pull on your arms, legs, or body. The best way to imagine what weightlessness is like is to float in a swimming pool. Lying on your back in a swimming poo! is the closest approach we can
28) Astronaut sleeping vertically
29) Astrunaut sleeping horizontally
30) Food package (type of food unknown)
31) Astronauts at galley (galley pictured in background)
32) Space Shuttle toilet
make to feeling the sensation of weightlessness. So on the shuttle all you would have to do is close your eyes and float. However, the astronauts on the shuttle sleep a little differently. To keep themselves from bumping into instruments or slamming into walls while they are alseep, they strap themselves to the sides of the shuttle. Some sleep upright, some sleep horizontally.

How abuut eating? How do the astronauts eat in space? Before the space shuttle, astronauts would eat freeze-dried food stored in plastic containers. To rehydrate the food, water was injected into the pack and after kneading the contents the food became a puree and was squeezed through a tube into the astronaut's mouth. If this does not sound too bad, think about this: take a peanut butter and jelly sandwich, put it in a blender and tum it on. Then take the mixture and put it in an oven to take the water out. Atter putting the dried lump in a plastic bag, take Su.-a cold water and mix the contents up. Make a hole in tie bag and suck the "delicious" treat out through the hole. This is what is was like to eat in space before the space shuttle.

On the shuttle the astronauts have a food galley which features hot and cold water, a pantry which holds the food packs, an oven to heat food, serving trays, a personal hygiene station and a water heater. The biggest improvement is the menu. the current shuttle menu contains over 70 food items and 20 beverages. Astronauts have a varied menu every day for six days, three meals each day which contain such tantalizing tidbits as beef steak, scrambled eggs, shrimp cocktail, stewed tomatoes, broccoli, dried apricots and Life Saver candy.

And of course, there is onr human function that we all inust do everyday. Even though the astronauts are in outer space they cannot escape the arduous task of going to the bathroom. Here is a picture of the space toilet aboard the space shuttle which is used by both men and women astronauts.
33) Drawing of shuttle retuming froin space
34) Drawing of shuttle entering the atmosphere
35)

White tiles on Columbia being glued into place
36) Black tiles on underside of shuttle
37) Shuttle as it enters the atmosphere

Teacher Information: The engineering task of designing a toilet for weightlessness is extremely difficult. The toilet operates with a series of pumps, valves and storage tanks. And in the 24 shuttle flights to date it has only operated properly on seven flights. The toilet is built by General Electric and required 12 years of engineering develcpment costing a total of 5 million dollars.

If you don't think that going to the bathroom in zero gravity is difficult, just remember : in space everything floats.

Once the astronauts conclude their activity in space, they prepare the shuttle to re-enter the atmosphere. In many respects, re-entry is the most important aspect of the mission because of the intense heat caused by friction - the interaction of the air molecules with the shuttle's skin. During re-entry the shuttle experiences temperatures of up to 2600 degrees F (a cake is baked at 350 degrees).

To protect the shuttle from this intense heat, the skin is covered with protective tiles. The tiles, which vary in size but are on the average about 6 cubic inches, absorb the heat into their center, thus protecting the shutte's aluminum skin.

Teacher Information: The tiles are made of a very pure and fine silica fiber. They consist of 95% void (or air) and 5% silica fiber (glass). The first shuttle, Columbia, is covered with 33,000 tiles. The white tiles are for temperatures between 600 and 1200 degrees F. The black tiles are for temperatures between 1200 and 2300 degrees F. The grey area on the nose and leading edge of the wing is reinforced carbon-cartion (similar to the heat shield on the Apollo) which protects the shuttle from temperatures exceeding 2300 degrees.

As you remember, the shuttle jettisoned its rockets when it reached orbit, leaving it without power (There are little thrusters that are used in orbit to maneuver the shuttie). Therefore when the shuttle returns to Earth, it is a glider - an airplane without engine power.
38) Shuttle on 25 degree glide sloze (small plane in picture is a "chase plane")

Once the shuttle enters the atmosphere it is travelling nearty 25 times the speed of sound (over 17,000 miles per hour). Most airplanes when they come in for a landing, make a rate of descent less than 2 degrees to the horizon. The shuttle is literally falling at a slopes of 25 degrees.

To slow itself down, the shuttle makes a series of "S" tums like a skier descending a mountaill slope. On final approach to its landing site, the shuttle lowers its landing gear at about 200 feet above the ground and lands at an approximate speed of 220 miles per hour.

After the shuttle has landed, it is taken back to Florida on the back of a 747, where it will be readied for anothei flight.
42) Shuttie launch

Name the coordinates and comnect the dots.

										1												
$A(4,-2)$.												
$B(8,-2)$										-												
$C(8,2)$,												
$D(6,5)$							${ }^{\prime}$			-			F									
$E(4,2)$,												
$F(4,8)$																						
$G(0, N)$,				-												
$\mathrm{H}(-4,8)$,												
$1(-4,2)$,												
$J(-6,5)$					k					,			,		c							
$k(-8,2)$																						
$L(-8,-2)$																						
$M(-4,-2)$																						
$N(-4,4)$							M			.			\wedge		,							
$\bigcirc(-8 ; 4)$										L												
$P(-4-14)$							N			,	,		,									
$Q(4,4)$										-												
$R(8 ; *)$										-												
S (4, -4)										,												
										,												
										,												
										$\stackrel{\square}{2}$												
										.												
										-												
										-												
9				1.																		

Record sheet: ALL ABOARD COORDINATE PUZZLE Name
Name the coordinates and comnect the dots.

											,													
$\Delta(, ~)$																								
B $($, $)$																								
C (,)																								
D (,)								${ }^{4}$.			F										
E (,)											,													
F (,)																								
$G(1)$											-													
H(,)											,													
$1($,											,													
」 (,)					k						1			,										
k (,)																								
$L($,																								
M (,)																								
N (,)					2			m			+			,			:							
O (,)											.													
$P^{P}($,								\cdots			2			s										
$Q($,)											-													
R (,)											-													
S (,)											-													
											,													
											\cdots													
											${ }^{2}$													
											-													
											\rightarrow													
											\cdots													
					\bigcirc			.						Q			2							

THE SHUTTLE... LET'S MAKE IT

Preparation/Materials

- Make a model of the orbiter Math Skills before class to become aware
- Plane Figures
- Scale Models and Scale Drawing of its idiosyncrasies.
- Make an overhead of the Orbiter Blueprint, (Optional)
- "Orbiter Blueprint"
- Scissors for each student
- Rubber cement (not glue)

During class:

- Help the students make their models of the orbiter using the orbiter blueprint plans. Making a model helps students gain familiarity with the orbiter, its components and its proportionality. The students' models for the orbiter will be used in later activities.
- Discuss:
- the design of the orbiter;
- the shapes suggested by its various parts, i.e., wings look like triangles, the body looks like half of a cylinder, its engines look like truncated cones...

Extensions

- "The Shuttle"
- Fly the orbiters in competition; mark and measure the landing points. The orbiter who flies the farthest wins!
- "Creative Blast-Off"

 en) meoned.

$$
\approx 1,500,000 \text { lbs. }
$$

$\approx 1,200,000 \mathrm{lbs}$.

$$
\text { \& } 1, c 80,000 \text { th. }
$$

 hoomex mpervion to otbt epertlope?

$$
\approx 362,00054 .
$$

5 The thate Colimitia travale al $17,500 \mathrm{mph}$. wite in ortale operations

Approvinnedy how mary grolet dows the ahubip trivel in one dey?

$$
15.8 \text { or } \approx 16 \text { orbits }
$$

6 Abour how mary diys was Columetio in ortil 1 : X trevelted $1,428,000$ mine?

$$
\approx 3.5 \text { days }
$$

$$
\text { aren }=131^{\prime} \times n 4^{\prime} \& 15,000 \text { sg. ft. }
$$

 The pelney wint teve betmeen 8 and 8 houre.

How tacil in the crawiter trovelinge?
between .6 and 7 M P.H.
\qquad

Paylos its the term used to describe the cargo that the shuttie can carry Into or bring out of space.

The total weight of the shittle at Iff-off ls $4,457,825 \mathrm{lbs}$. Each of the two rocket boosters weighs 193,000 lbs. and carries about .55 million lbs. of fuel.
The external tank welghs $\mathbf{7 8 , 0 0 0}$ lbs. and carries 1.66 million lbs. of tuel.
The orblter without payload welghs 150,000 lbs.

1. Two minutes after launch, the fuel in the booster rockets is exhausted and the rocke's are jettisoned.

What is the approximate weight loss?
2. After 8 minutes, the fuel from the external tank is exhausted and this tank is jettisoned. How much of the original weight at launch remains?
3. In terms of weight, how much cargo can te carried on the shuttle?

Name \qquad

THE SHUTTLE

4. If the solid booster separation occurs at 131.7 seconds into flight at an altitude of 165,605 feet and orbital operations begili 2717.4 seconds into flight at an altitude of approximately 100 miles, what is the approximate difference in altitude from solid booster separation to orbit operations?
5. The shuttie Columbia travels at $17,500 \mathrm{~m}$. p.h. while in orbital operations. The length of the shuttle's orbit is 26,500 miles.

Approximately how many orbits does the shuttle trak n one day?
6. About how many days was Columbia in orbit if it travelled $1,428,000$ miles?

Name \qquad

THE SHUTTLE

7. The mobile launching pad is carried by an eight-tracked crawler transporter, by far the world's biggest land vehicie.

The platform measures 131 by 114^{\prime}
Draw a scale drawing of the platiorm. Scale $i^{\prime \prime}=40^{\prime}$

What is the approximate area of the mobile launching pad?
8. The crawler brings the shutte from the Vehicle Assembly Building to the launch pad. The journey will take between 5 and 6 hours.

The launch pad is only 3.5 miles away from the Vehicle Assembly Building.
How fast is the crawier travelling?

CREATIVE BLAST-OFF

'-'sing your mode! of the orbiter, a balloon, and a piece of string, simulate the blast-off. How far up the string did your orbiter travel?

What would happen if:

> - the balloon was bigger?
> - the string was steeper?

How could you make the orbiter travel faster?

ORBITER "SPECS"

Preparation/Materials

- "Obititer Specs"
- Orbiter Model
- Ruler

Math Skills

- Scale and Scale Drawing

During class:

- Introduce the class to the various parts of the orbiter using a scale model. Point out the different orbiter features and their uses:
- Wings and wing span
- Body: Hts width and height
- Payload bay
- Mid deck
- Flight deck
- "Decals": the flag and the USA
- Explain to the students that the dimensions of this scale model are proportional to the dimensions of the actual orbiter.
- Pose the question:
"If we know that the wing span of the model represents an actual wing span of 78 feet, what would be the length of the actual orbiter?"
- Teach the students how to use their scale model of the oribiter along with ratio and pruportion techniques to determine other measurements of the orbiter.

Extensions

- "The Shuttle System: How Big is ti?"
- Ask students to pick an object in their house and make a model of it: using the same scale as used in the orbiter model.

ORBITER "SPECS"

		Measure on scale model	Estimate of actual measure
Use your masit of the orbiter to find:	Wing Span		78 feet
	Length		
	Height of Payload Bay		
	Length of Payload Bay		
	Height of "U" in "United States" decal		
	Height of "N" in "NASA"		
	Height of Flag		
	Width of Flag		

Name
 \qquad THE SHUTTLE SYSTEM - HOW BIG IS IT?

- About how long is the payload bay? $3.5 \times 15^{\circ}=52.5^{\prime}$

- About how high is the middeck?
- What is the total area astronauts have available in which io live and
work? \qquad

2. Looking at the two views of the externa tank and solid rocket boosters:

From the back:
From the bottom: The engines:

Estrmeta the Dimmonsions:	Sold Fookec Booster	Extermal Tank
Lengoth	$27^{\circ} \times 6=162$	$27^{\prime} \times 7=189^{\prime}$
Diameter	13^{\prime}	30^{\prime}

Name \qquad

THE SHUTTLE SYSTEM - HOW BIG IS IT?

1. Using a picture of the orbiter find the following dimensions.

- About how long is the payload bay?
- About how long is the middeck?
- About how high is the middeck?
- What is the total area astronauts have available in which to live and work? \qquad

2. Looking at the two views of the external tank and solid rocket boosters:

From the back:
From the bottom:
The engines:

SCALE: $=16^{\circ}$

Estimate the Dimensions:	Solid Rocket Booster	Extemal Tank
Length		
Diameter		

112

SURE IT'S BIG... ...BUT COMPARED TO WHAT?

Preparations/Materials

- Prepare Measurement Trivia Sheet for student use (Fact Book)
- "More Comparisons"

Math Skills

- Estimation in Computation
- Ratio and Proportion

During class:

- Distribute and discuss the Measurement Trivia Sheet. it lists familiar measurements which may have meaning for students.
- Work together with the class to compare the length of the shuttle with the length of an MBTA bus. Use a ratio to compare the lengths.

$$
\frac{\text { Length of Orbiter }}{\text { Length of Bus }}=\frac{122 \mathrm{ft}}{40 \mathrm{ft}}
$$

The orbiter is about 3 times longer.

- Discuss with students that we should compare the orbiter to things we know in order to appreciate its size and power.
- Ask the students to use ratios to find the solutions to "More Compaisons."

Extensions

- "Sure lt's Big, But Compared to What?"
- Ask students to find more measurement trivia and to use these facts to make comparisons with characteristics of the orbiter.

MORE COMPARISONS...

1. The orbiter travels at approximately 17,500 m.p.h. when in orbit.

- How much faster is the orbiter than a jet?

Ratio:
The orbiter is about \qquad times faster than a jet.

- How much faster is the orbiter than a car?

Ratio:
The orbiter is about \qquad times faster than a car.

- How much faster is the speed of light than the orbiter? Ratio:

The speed of light is about \qquad times faster.
2. The cargo bay can hold about 65,000 lbs.

- Approximately how many elephants could be transported in the cargo bay?
- About how many MBTA buses could be transported in the cargo bay?
- About how many Refrigerator Perrys, packed together like sardines, could be transported in the cargo bay?

3. The orbiter is subjected to a temperature of 2700 degrees Fahrenheit during re-entry.

- About how much hotter is this than the temperature of boiling water? (Water boils at $212^{\circ} \mathrm{F}$) \qquad
- About how much hotter is this than the Earth's maximum temperature?

4. The shuttie's "nervous system" consisic of five computers. Each computer has a memory bank of 48,261 wonts.

- To the nearest thousand, how many words can be stored? \qquad

MORE COMPARISONS...

1. The orbiter travels at approximately 17,500 m.p.h. when in orbit.

- How much faster is the orbiter than a jet?

Ratio: $\frac{17,500}{650}$
The orbiter is about \qquad times faster than a jet

- How much faster is the orbiter than a car?

Ratio:

The orbiter is about \qquad 318 times faster than a car.

- How much faster is the speed of light than the orbiter?

Ratio:

The speed of light is about \qquad times faster.

2. The cargo bay can hold about $65,000 \mathrm{lbs}$.

- Approximately how many elephants could be transported in the cargo bay?

8 elephants

- About how many MBTA buses could be transported in the cargo bay?

2 buses

- About how many Refrigerator Perrys, packed together like sardines, could be transported in the cargo bay?

3. The orbiter is subjected to a temperature of 2700 degrees Fahrenheit during reentry.

- About how much hotteris this than the temperature of boiling water? (Water boils at $212^{\circ} \mathrm{F}$) 13 times.
- About how much hotter is this than the Earth's maximum temperature?

20 times

4. The shuttle's "nervous system" consists of five computers. Each; computer has a memory bank of 48,261 words.

- To the nearest thousand, how many words can be stored? 241,000 words

ORBITER:

SURE IT'S BIG..

Actual length of Orbiter $=122^{\prime}$
Actual length of MBTA Bus $=40^{\prime}$
The Orbiter is about 4 times longer.
Choose something you know to compare to the Orbiter
Actual length of Orbiter = \qquad Compared to:
The \qquad is about \qquad times longer.

Actual height of the Orbiter $=$ \qquad
Compared to: \qquad is about
s higher.
The \qquad

Actual weight of the Orbiter = \qquad Compared to: \qquad
The \qquad is about
\qquad times heavier.

Maximum speed of Orbiter = \qquad Compared to: \qquad The \qquad is about times faster.

Actual Width (Wing span of Orbiter) = \qquad
Compared to: \qquad
The wing span is
times wider.

PAYLOAD ARM:

BUT COMPARED TO WHAT?

Actual length of payload arm $=$ \qquad Compared to: \qquad
The \qquad is about
\qquad times longer.

EXTERNALTANK:

Weight at take-off $=$ \qquad
Compared to: \qquad
The tank is
times heavier.

PLANNING FOR LIFE ON BOARD... ...LET'S EAT

Preparation/Materials

- "Space Shuttle Food and Beverage List"
- "Let's Eat"
- Calculator (Optional)

Math Skills

- Estimation in Computation
- Logical Problem Solving

During class:

- Discuss types of planning that must go on in order for astronauts to live in the orbiter during the mission.
- Consider the problem of meal planning.
- Why musi the food be prepackaged?
- Why must the food be easily cooked?
- Why must the food be compact?
- Why must the food be as light in weight as possible?
- Explain to the students that each astronaut must consume 2500 calones a day.
- Ask the students to estimate the amount of each kind of food allowed for a given menu, so that an asironatt does not exc6ed the required number of total calories.
- Discuss what other elements of daily life must be preplanned:
- showers
- exercise
- going to the bathrooml
- other?

Extenzions

- "Crew's Quarters"
- Make acce'stable substitutions on menu, total calories miust rsinain the same.
- Plan sriother day's menu.

LET'S EAT!

Typical Menu for the First Four Shuttle Flights

DAY 1
Peaches
Beef patty
Scrambled eggs
Bran flakes
Cocoa
Orange drink

Frankfurters 50 ea.*
Turkey tetrazzini 340
Bread 56 *
Bananas 100 ca. *
Almond crunch bar 210 *
Apple drink 116 *

Shrimp cocktail
Beef steak
Rice pilaf
Broccoli au gratin
Fruit cocktail
Butterscotch pudding
Grape drink

DAY 2
Applesaure
Recf jerky
Granola
Breakfast roll
Chocolate instant breakfast
Orange-grapefruit drink
Comed beef 422 *
Asparagus 44/cup *
Bread 56*
Pears
Peanuts
Lemcinade

DAY 3
Dried peaches
Sausage
Scrambled eggs
Cornflakes
Cocoa
Orange-pineapple drink

Ham
Cheese spread
Bread
Green beans and broccoli
Crushed pineapple
Shortbread cookies
Cashews
Tea w/hemon and sugar
Beef w/barbecue sauce 500* Cream of mushroom
Cauliflower w/cheese 700 *
Green beans w/ mushrooms 54/c. *
Lemon pudding
Pecan cookies
Cocoa

Smoked turkey
Mixed Italian vegetables
Vanilla pudding
Strawberries
Tropical punch

DAY 4
Dried apricots
Breakfast roll
Granola w/ blueberries
Vanilla instant breakfast
Grapefruit drink

Ground beef w/ pickle sauce
Noodles and chicken
Stewed tomatoes
Pears
Almonds
Strawberry drink

Tuna
Macaroni and cheese
Peas w/butter sauce
Peach ambrosia
Chocolate pudding
Lemonade

* indicates calorie count.

> ASTRONAUTS MUST EAT A CAREFULLY PLANNED DIET OF 2500 CALORIES PER ASTRONAUT PER DAY.
> TYPICAL MENUS ARE ABOVE.
> THEY TELL YOU WHAT THE ASTRONAUTS EAT, BUT NOT ALWAYS HOW MUCH.

1. The lunch menu for Day 1 used up 1022 calories.

All food amounts are indicated, except for the frankfurters and bananas.
How much of each could an astronaut have eaten and stayed within the calorie count?
2. Look at dinner on Day 2. How much lemon pudding, pecan cookies and cocoa was allowed? Dinner = 1421 calories.
3. If you were to make 3 substitutions on Day 3, what would they be? Remember total calories must remain the same.
4. Plan a menu for Day 5. Do your work on the back of this page.

Name \qquad

LETS EAT!

Typical Menu for the First Four Shuttle Flights

DAY 1
Peaches
Beef patty
Scrambled eggs
Bran flakes
Cocoa
Orange drink

Frankfurters 50 ea.*
Turkey tetrazzini 340
Bread 56 *
Bananas 100 ea. *
Almond crunch bar 210*
Apple drink 116^{*}

DAY 2
Applesauce
Beef jerky
Granola
Breakfast roll
Chocolate instant breakfast
Orange-grapefnuit drink
Cored beef 422 *
Asparagus 44/cup *
Bread 56*
Pears
Peanuts
Lemonade

DAY 3
Dried peaches
Sausage
Scrambled eggs
Comflakes
Cocoa
Orange-pineapple drink

Ham
Cheese spread
Bread
Green beans and broccoli
Crushed pineapple
Shortbread cookies
Cashews
Tea w/lemon and sugar
Beef w/barbecue sauce 500 * Cream of mushroom
Cauliflower w/cheese 700 *
Green beans w/
mushrooms 54/c.*
Lemon pudding
Pecan cookies
Cocoa
soup
Smoked turkey
Mixed Italian vegetables
Vanilla pudding
Strawberries
Tropical punch

DAY 4
Dried apricots
Breakfast roll
Granola w/ blueberries
Vanilla instant breakfast Grapefruit drink

Ground beef w/ pickle sauce
Noodles and whicker
Stewed tomatoes
Pears
Almonds
Strawberry drink

Tuna
Macaroni and cheese Peas w/butter sauce Peach ambrosia Chocolate pudding Lemonade

ASTRONAUTS MUST EAT A CAREFULLY PLANNED DIET OF 2500 CAL DRIES PER ASTRONAUT PER DAY.

tYPICAL MENUS ARE ABOVE. THEY TELL YOU WHAT THE ASTRONAUTS EAT, BUT NOT ALWAYS HOW MUCH.

1. The lunch menu for Day 1 used up 1022 calories.

All food amounts are indicated, except for the frankfurters and bananas.
How much of each could an astronaut have eaten and stayed within the calorie count?

2. Look at dinner on Day 2. How much lemon pudding, pecan cookies and cocoa was allowed? Dinner $=1421$ calories .

167 calories left for lemon pudding, pecan cookies

3. If you were to make 3 substitutions on Day 3, what would they be? Remember total calories must remain the same.
4. Plan a menu for Day 5. Do your work on the back of this page.

Foods* Space Shuttle Food and Beverage List		
Applesauce (1) 100\%cup	Chicken α la king (1) 468/cup	Nuts, peanuts (NF) 6 \$/402.
Apricots, dried (IM) 332/cup	Chicken and noodies (R) 658/cup	Peach ambrosia (R) 200/cup
Asparagus (R) 44/cup	Chicken and rice (R) $658 / \mathrm{cup}$	Peaches, dried (IM) 419/cup
Banenas (FD) 135/cup	Chili mac w/beef (R) 302/cup	Peaches (T) 200\%cup
Beef almondine (R) 272/402.	Coomies, pecan (NF) 100/each	Peanut buter 685/402.
Beef, comed (I) (T) 422/402.	Cookies, shortbread (NF) 141/each	Pears (FD) 173/ea.
Beef and gravy (T) 272/40z.	Crackers, graham (NF) 62/each	Pears (T) 194/ea.
Beef, ground, w/pickle sauce(T)2	Eggs, scrambled (R) 123/ea.	Peas w/butter sauce (R) $260 /$ cup
Beef jerky (IM) 272/40z.	Food bar, almond crunch (NF) 150	Pineapple, crushed (T) $66 / \mathrm{cup}$
Beef patty (R) 303/402.	Food ber, chocolate chip (NF) 150	Pudding, butterscotch (T) 457/cup
Beef, slices w/barbeque sauce (T) 500/40z.	Food bar, gronola (NF) 150 Food bar, granola/raisin (NF) 150	Pudding, chocolave (R) (T) 385/cup Pudding, lemmon (T) 322/cup
Beef steak (T) 272/40z.	Food bar, peanut	Pudding, vanilla (R) (T) 283/cup
Beef stroganoff w/hoodles 500/40z.	butter/granola (NF) 150	Rice pilaf 223/cup
Bread, seedless rye (NF) 56/slice	Frankfurters (T) 106/ea.	Salmon (T) 232,402.
Broccoli au gratin (R)100/cup	Fruitcale (NF) 379/308.	Sausage patty 129/each
Breakfast roll (NF) 90/each	Fruit cocktail (T) 84/cup	Shrimp cocktail 103/40z.
Candy, Life Savers, assorted flavors (NF) 25/each	Green beans, french w/mushrooms 54/cup	Soup, cream of mushroom134/cup Spaghetti w/meatiess sauce(R) 332/cup
Cauliflower w/choese (R) 78/cup	Green beans and broccoli 54/cup	Strawberries (R) 55/cup
Cereal, bran flakes (R) 106/cup	Ham (I) (T) 531/80c.	Tomatoes, stewed (T) 51/cup
Cereal, comflakes (R) 97/cup	Jam/3elly (T) 78/00.	Tuna (T) 126/cup
Cereal, granola (R) 130/cup	Mscaroni and choese (R) 430/cup	Turkey and gravy (T) 240/402.
Cereal, granola w/blueberries(R)175	5 Meab alls w/barbeque sauce	Turkey, smoked/sliced (I) (T) 240/40z.
Cereal, granola w/raisins (R) 241	Nuts, almonds (NF) 678/402.	Turkey tetrazzini (R) 340/40z.
Cheddar cheese spread (T) 450/cup	Nuts, cashews (NF) 639/40z.	Vegetables, mixed italian (R) 80/cup
Beverages		Condiments
Apple drink 116/cup	Instant breakfast, vanilla 290	Barbeque sauce 228/cup
Cocos 125/cup	Lemonade 107/cup	Catsup 289/cup
Coffee, black 0	Orange drink 125/cup	Mustard 228/cup
Coffee w/cream 45/cup	Orange-grapefruit drink 125/cup	Pepper 0
Coffee w/cream and sugar 95/cup	Orange-pincapple drink 125/cup	Salt 0
Coffee w/sugar 45/cup	Strawberry drink 125/cup	Hot pepper sauce 0
Grape drink 135/cup	Tea 0	Mayonnaise 1580/cup
Grapefruit drink 135/cup	Tea w/lemon and sugar 45/cup	
Instant breakfast, chocolate 290	Tea w/sugar 45/cup	
Instant brealfast, strawberry 290	Tropical punch 200/cup	
* abbreviations in parantheses indicate type of food $T=$ thermostabilized, $I=$ irradiated, $I M=$ intermediate moisture, $\mathrm{FD}=$ freeze dried, $\mathrm{R}=$ rehydratable, and $\mathrm{NF}=$ natural form		

Space Shuttle Menu Design

The Shuttle Menu is designed to provide nutrition and energy requirements escential for good health and effective performance with safe, highly acceptable foods. In order to maintain food nutrition, the menu will provide at least the following quantities of each nutrient each day:

| Protein | (g) 56 | Vitamin B 12 | (g) 3.0 |
| :--- | :--- | :--- | :--- | :--- |
| Vitamin A | (iu) 5000 | Calcium | (mg) 800 |
| Vitamin D | (iu) 400 | Phosphorus | (mg) 800 |
| Vitamin E | (iu) 15 | lodine | ($\mu \mathrm{g}) 130$ |
| Ascorbic Acid | (mg) 45 | Iron | (mg) 18 |
| Floacin | (Hg) 400 | Magnesium | (mg) 350 |
| Niacin | (mg) 18 | Zinc | (mg) 15 |
| Riboflavin | (mg) 1.6 | Potassium | (meq) 70 |
| Thiamine | (mg) 1.4 | Sodium | (meql 50 |
| Vitamin B6 | (mg) 2.0 | | |

\qquad

MIDDECK FLOOR PLAN

Estimate the size of each.
Find an area in the classrocm of the same area.

	Approximate Size	Like a:
Galley	$1.5^{\circ} \times 3^{\circ}$	
Toilet	$2.5^{\prime} \times 3.5^{\prime}$	
Lockers	$1.5^{\circ} \times 1.5^{\prime}$	
Total Floor Space		

CREW'S QUARTERS

1. Galley

2. Hatch
3. Toilet
4. Ladder to flight deck
5. Airlock
6. Avionics bay 1
7. Avionics bay 2
8. Avionics bay 3
9. Lockers
10. Sleep Station
11. Wall of Lockers

FLOOR HATCHES:
12. Lithium hydroxide changeout
13. Lithium hydroxide storage
14. Wet trash storage

MIDDECK FLOOR PLAN

Estimate the size of each

Find an area in the classroom of the same area.

	Appioximate Size	Like a:
Galley		
Toilet		
Lockers		
Total Floor Space		

PLANNING FOR LIFE ON BOARD... ..LET'S WORK

Preparation/Materials

- Build a tetrahedron from straws for a demonstration in class
- "Let's Work"
- Triangular Panels
- Pipe Cleaners
- Straws
- Ruler, Scissors
- Graph Paper, Construcion Paper
- Elastics

Math Skills

- Geometry: Solid Figures
- Scale Drawing and Scale Models
- Measurement: Surface Area
- Measurement: Volume

During Class:

- Explain to students that each mission involves certain jobs and experiments that the astronauts must complete.
- Many current experiments involve leaming about techniques for building in space.
- A recent experiment planned by MIT asked astronauts to build a tetrahedron in space.
- Discuss how building in space is quite different frorn building on earth.
- The materials can be lighter.
- All tools and materials must be anchored.
- Ask students to read about the Project EASE and complete "Let's Work".

Extensions

- Possible topics for discussion:
- Why/what experiments are better done in space?
- What constreints limit orbital operations?
- Why is it easier to build a space station in space than on earth?
- Problem Cards \#22, 24
- Examine "Anothar Building Shape". Pose questions similar to those for the tetrahedron.
\qquad

PROJECT EASE

A RECENT EXPERIMENT TO LEARN ABOUT WORKING IN SPACE WAS DESIGNED BY SCIENTISTS AT MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT).

THE TAS' WAS TO BUILD A TETRAHEDRON IN SPACE USING SIMPLE TOOLS, LONG RODS, AND SIMPLE CONNECTORS.

SCIENTISTS STUDIED THE TIME AND EASE WITH WHICH THE ASTRONAUTS DID THE JOB.

ASTRONAUTS WORK ORDERS

1. Make a tetrahedron with straws and pipe cleaners. Each straw should be $6^{n \prime}$ long.
A reminder: a tetrahedron is a pyramid with four
 equal triangular faces.
2. Estimate the height of the tetrahedron.

About your tetrahedron:
a. How many faces does it have? \qquad
b. What shape is each face?
c. How many vertices? \qquad
d. How many edges? \qquad
3. Why is a tetrahedron a useful building shape?
4. Which of these is a "net" of a tetrahedron? A net is the two dimensional representation that when folded together will produce a three dimensional model.

5. Is there another possible "net" for a tetrahedron? Draw it.

...FINISHING THE JOB

1. Cut out several triangular panels. Make a tetrahedron with triangular panels and elastics. The tetrahedron will be stronger if the panels are traced onto stiff paper and than cut out.
2. How many different solid shapes can you make using equilateral triangles? You may need to cut out more panels.
3. Estimate the dimensions of your tetrahedron, if the length of one side is $\mathbf{3}^{\mathbf{n}}$. Use graph paper, ruler, and the tetrahedron "net" as needed.

- Approximate Height = \qquad
- Approximate Surface Area = \qquad
- Approxinate Volume = \qquad

4. On your tetrahedron model, let one inch represent a length of 20 feet.

Estimate:

- Surface Area of a 60' tetrahedron: \qquad

Name \qquad
..FINISHING THE JOB

1. Cut out several triangular paneis. Make a tetrahedron with iriangular panels and elastics. The tetrahedron will be stronger if the panels are Iraced onto still paper and then cut out.
2. How many diferent solid shapes can you make using equilateral tnangles? You may need to cut out more panels.
3. Estimate the dimensions of your tetrahedron, il the length of one side is $3^{\text {" }}$. Use graph paper, ruler, and the tetrahedron "net" as needed.

- Approximate Height $=\simeq 2.4$ mehes .
- Approximate Surtace Area $=\ldots 16$ sq. in.
- Approximate Volume $=\approx 2$ cu in.

4. On your tetrahedron model, let one inch represent a length of 20 feet.

$$
\text { Estimate: } \quad H \times 48^{\prime}
$$

- Surtace Area of a 60 tetrat.gecron: $\approx 6240 \mathrm{sq} \mathrm{ft}$.
- Volume of a 60 tetratedron. $\approx 25,000 \mathrm{cu}$ fe.

Regional Math Network - Havvard Graduate School of Education • Harvard University

PLANNING FOR LIFE ON BOARD... LET'S EXPERIMENT...

Preparation/Materials

- "Let's Experiment"
- Calculators (Optional)

Math Skills

- Geometric Solid: Cylinder
- Measurement: Surface Area
- Measurement: Volume
- Scale Drawing and Scale Models
- Estimation in Computation

During class:

- Describe and discuss the recent GTE "Getaway Special" experiment sent up with the orbiter, using "Let's Experiment."
- Review the characteristics of cylinders us'sd for the Getaway Specials, including:
- the circular shape of base
- surface area
- volume
- Discuss with students the kinds of Getaway Specials that might be sent:
- students research what local companies have done.
- students speculate about the kinds of experiments that would benefit from the "weightlessness" of the space laboratory.
- students discuss the limitations of the "space laboratory."

Extensions

- "Get Away Specials"
- Discuss packing strategies for payload bay.
- Find out about other experiments that have been sent up on shuttle missions.
\qquad

The NASA "Get Away Special" (GAS) program enables private parties to "rent" space on on a Shuttle Mission. This was first advertised almost ten years ago.

The number of "specials" that a shuttle can carry depends on what else is on board, such as communications satellites. One recent G.iutle Mission was able to carry 12 "specials".

For $\$ 10,000$, a payload will be carried that is contained in a cylinder providing 5 cubic feet of space to the user. The cylinder is approximately $19.75^{\prime \prime}$ in diameter and $28.25^{\prime \prime}$ long, with a 200 lb . limit.

For a cheaper price, $\$ 5,000$, a 2.5 cubic foot of space, with a 100 lb weight limit, is available.

The "cut-rate" deal is for $\$ 3,000$. You may rent a cylinder $14.5^{\prime \prime}$ in diauneter and $19.75^{\prime \prime}$ in length, with a weight limit of 60 lb .

GTE Laboratories in Waltham was one of the many companies who took advantage of the offer. Ten
 years ago the President of GTE reserved four spots.

GTE rented the large cylinder. The GTE experiment was to examine high intensity lamps to determine the effects of gravity. The results showed light is brighter when there is no gravity.

The GTE payload included over 2000 parts which cost about $\$ 40,000$. The total program costs about $\$ 750,000,000$, including salaries and overhead.

1. Draw scale models of each of the cylinders. (Scale: $1^{\prime \prime}$ represents 4^{\prime}) on the back of this page.
2. Determine the approximate cost of renting a cubic inch of space in each cylinder.

$$
1: 1
$$

LET'S EXPERIMENT

Name \qquad

The NASA 'Gel Away Speciar (GAS) program enables private parties to "rent" space on on a Shuttie Mission. This was first advertised almost ten years ago.

The number of "epecials" that a shutlie can carry depends on what else is on board, euch as communications semelines. One recent Shuttio Miscion was able to carry 12 "specials".

For $\$ 10,000$, a peyload will be carried that is contained in a cylinder providing 5 abbic foet of space to the user. The cylinder is approximately $\mathbf{1 9 . 7 5}^{\circ}$ in ciameter and 28.25° long, with a 200 ob . limit.

For a cheaper price, $\$ 5,000$, 2.5 abic foot of space, with a 100 to weight limit, is available.

The "Eut-rate" deal is for $\$ 3,000$. You mav "ant a cylinder 14.5° in diameter and 19.75° in length, with a welght limit of 60 ob .

GTE Luboratories in Wathem was one of the many companies who took advantage of the offer. Ten years 200 the President of GTE reserved four spols.

GTE rented the large cylinder. The GTE experiment was to examine high intensity lamps to determine the effects of gravity. The resulls showed light is brighter when there is no gravity.

The GTE payload inctuded over 2000 parts which cost about $\$ 40,000$. The total program costs about
$\$ 750,000,000$, inctuding salaries and overhead

1. Draw scale models of each of the cylinders. (Scale: $1^{\prime \prime}$ represents 4^{\prime}) on the back of this page.
2. Determine the approximato cost of renting a cubic inch of space in each cylinder.
$19.75^{\circ} \times 28.25^{\circ}$ cylinder
$\$ 1.16 \mathrm{cos.in}$
$14.5^{\prime \prime} \times 19.75^{\circ}$ cylinder $\$.92$ cm in

Regonal Mant Notwork - Hanved Graduale School of Edu:mion - Hacvard Unwersty

"GET AWAY SPECIAI S"

1. AT\& T has a new inter-communications satelle it wants to launch on the next mission. The satellite weighs 2.46 tons At a rate of $\$ 52$ per pound, how much would NASA charge AT\& T?

At the "Get away speciar" rate, what would the cost be? 200 16 rde $x^{6} 10,00$

$$
\operatorname{cost} \approx 25 \times 10,000=250,000
$$

2 The payload bay can Eairy $29 .: \cdot$ tons.
At $\$ 52$ per poy:"w, how much wh ild NASA charge if the payload bay were completely
filled? 29.5 二 30×2 een lbs
-60,000 16.
costs $552 \times 60,000=3,420,000$
At the "Get away special" rate, what would the cost be?

$$
\text { cost } a 300 \times 10,000=\text { \& } 3000 p 00
$$

3. Find the volume of the payload bay

Height is approximately 15
Length is 37.5^{\prime}
$v=\frac{3\left(15^{2}\right) \times 38}{2}$
The formula for the volume of a cylinder is $V=\pi(\text { radius })^{2} x$ length $=12,825 \mathrm{~cm}$ 中.
So the volume of the payload bay is $\frac{\pi(\text { radius })^{2} \times \text { length }}{2}$

- Imagine the payload bay contains six "Get away specal" cylinders packed as shown in a crate which is the exact height of the cylinders. How much styroloam would be needed to fill the extra area in the box it:
- The cylinders are large (19.75° diameter $\times 28.25^{\circ}$ high $)^{7}$
 volume of crate $\mathrm{s} 96^{\prime \prime} \times 72^{\prime \prime} \times 28^{\circ} \% 193.536 \mathrm{~cm} \mathrm{~m}$. valome of ous cylvader (3). (1d) $28^{\prime \prime}=8400$ enion.
$6 \times 8400=50,400 \mathrm{qin}$. styrefoan $=113,536-50,400$
- The cylinders are mad.size "specials" (19.75" diameter X 1425 "high)? $x 143,1 \infty<\infty$ in. valuene of crate $x 98^{\prime \prime} \times 78^{\circ} \times 14^{\prime \prime} \approx 97,00{ }^{\circ} \mathrm{cu}$ in.
volume of one cylinder $2=3 \cdot\left(10^{2}\right) \cdot 14^{\circ}=4200 \mathrm{cvim}$.
$6 \times 4200=25,200 \mathrm{~cm} . \mathrm{ch}$. styrofoem $=97,000-25,200$
- The cylinders are cut rate "specials" (145^{5} diameter $\left.X 1975^{\prime \prime} \mathrm{hgh}\right)^{2} \approx 71,800 \mathrm{cmin}$.
volome of crate \& $138,00 \mathrm{~cm}$ in.
\checkmark dome of one cylunder $\$ 3375$ cu ia.

$$
\text { styrofoem } 138,000-20,250 \propto 117,800 \mathrm{~cm} \text { in. }
$$

Regional Math Notwork - Hanard Graduate School ol Education - Havard Unverzity

Name

"GET AWAY SPECIALS"

1. AT\&T has a new inter-communications satellite it wants to launch on the next mission. The satellite weighs 2.46 tons. At a rate of $\$ 52$ per pound, how much would NASA charge AT \& T?

At the "Get away special" rate, what would the cost be?

2. The payload bay can carry 29.5 tons.

At $\$ 52$ per pound, how much would NASA charge if the payload bay were completely filled?

At the "Get away special" rate, what would the cost be?
3. Find the volume of the payload bay:

Height is approximately 15^{\prime}
Length is $\mathbf{3 7 . 5}^{\prime}$
The formula for the volume of a cylinder is $V=\pi(\text { radius })^{2} \times$ length
So the volume of the payload bay is π (radius) $)^{2} \times$ length
2

- Imagine the payload bay contains six "Get away special" cylinders packed as shown in a crate which is the exact height of the cylinders. How much styrofoam would be needed to fill the extra area in the hox if:
- The cylinders are large (19.75" diameter $X 28.25^{\prime \prime}$ high)?

- The cylinders are mid-size "specials" (19.75" diameter X 14.25" high)?
- The cylinders are cut rate "specials" (14.5" diameter X 19.75 " high)?

3,2,1
 BLAST OFF!

Preparation/Materials	Math Skills
- "3,2,1 Blast-Off	- Use of Formulae - Estimation in Computation - Conversion of Units

During class:

- Discuss:
- The launch and the g-forces experienced by the astronauts;
- Training in the centrifuge to become accustomed to the g-forces;
- The similarity of the centrituge to familiar amusement rides.
- Ask students to complete the exercise about g-forces, "3,2,1 Blast-Off."

Extension

- "The Gemini Capsule"
- Journal Eniry: If you could take only one thing on the trip, what would it be? Why might you not want to go?
- "Toys in Space"

3,2,1 BLAST OFF

At lift-off, an astronaut experiences a force of 3 g 's. This means astronauts feel three times their weight on earth. To train for these g-forces, astronauts spin around in a centrifuge. As the tuming is increased, the astronaut feels stronger forces and therefore more g's.

Each of you has procably also travelled on a centrifuge. A centrifuge is simply a vehicle that travels a circular route at a very fast speed. At amusement parks, you often ride on rides that go around in circles at a fast speed.

To calculate the number of g's a rider feels, this formula is used.

$$
g^{\prime} \mathrm{s}=\frac{4 \times \pi^{2} \times \text { (Distance from the Turning Center) }}{32 \times(\text { Tuming Period })^{2}}
$$

The tuming period is the time it takes for a rider to make one turn.

1. A Merry-Go-Round is like a centrifuge. Our Merry-Go-Round is 32 ' in diameter. The circumference (distance around) is 32π or about $96^{\prime}(\pi$ is approximately 3). If the Merry-Go-Round completes a turn in 8 seconds, how many g's would you feel?

What is the approximate comparable speed in miles per hour?
2. About how long should the Merry-Go-Round take to complete a turn so that astronauts feel 3 g's?

Approximately how fast would that be in m.p.h.?

$$
168
$$

Name

3,2,1 BLAST OFF

At sith-ofi, en estronaut experiences a force of 's g's. This means estronauts feel three times their weight on eath. To train for theee g-forces, eatroneuts spin cound in a centituce. As the furning is increased, the estronat facls stronger forces and therefore more g's.

Exch of you has proberby aloo trevelied on a contrituge. A contuttuge is simply a vehicle that travels a chroular route ta a very fest speed. At amusement perks, you often ide on ides that go around in circles at a fast speed.

To calculate the mumber of g's a rider feeis. this formula is used.

- $g^{\prime} s=\frac{4 \times \pi^{2} \times \text { (Distance from the Tuming Center }}{32 \times \text { (Tuming Period) }^{2}}$

The turning period is the time it takes for a rider to make one turn.

1. A Merry-Go-Round is tike a centrffuge. Our Merry-Go-Round is 32 ' in diameter. The circumference (distance around) is $32 x$ or about 96 (x is approximately 3). It the Merry-Go-Round completes a tum in 8 seconds, how many g's would you feel? $9 \approx .28 \approx .3$ speed $\times 8.1$ M.P.H.
2. About how long should the Merry-Go-Round take to complete a tum so that astronauts feel 3 g's?

Approximately how fast would that be in m.p.h.?

$$
\begin{aligned}
& t=\sqrt{6} \mathrm{sec} . \\
& t \approx 2.5 \mathrm{sec} .
\end{aligned}
$$

$$
\text { speed } \approx x \text { M.P.H. }
$$

Name \qquad

COMPLETING THE RIDE...
merry-go-round 8 g's typically loses consciousness. In how many seconds must the merry-go-round complei'e a tum to produce a force of 8 g's?

$$
1.5 \mathrm{sec}
$$

2. Estimate its speed in miles per hour if it takes 3 seconds to complete a tum.

$$
22 m \cdot p \cdot h
$$

3. Find the forces exerted by the Merry-Go-Round if it takes ..

Seconds to complete tum	1	2	3	4	5	6	7	8
speed in miles per hour	85 mph	33 mph	22 mph	15 mph	13 mph	11 mph	10 mph	9mpn
Number of g's iell by a nder	18	4.5	2	. 1	. 7	. 5	. 4	.3

\qquad

COMPLETING THE RIDE...

1. A rider who feels 8 g's typically loses consciousness. In how many seconds must the merry-go-round complete a turn to produce a force of 8 g 's?
2. Estimate its speed in miles per hour if it takes 3 seconds to complete a turn.
3. Find the forces exerted by the Merry-Go-Round if it takes...

Seconds to complete tum	1	2	3	4	5	6	7	8
Hs speed in miles per hour	65 mph	33 mph		15 mph	13 mph	11 mph	10 mph	9 mph
Nuniber of g's felt by a rider								

How many times larger in area is your drawing than the original drawing?

TOYS IN SPACE

Preparation / Materials

- Preview "Toys in Space" with the Fact Book
- Selected Tcys from "Toys in Space" Experiments

Math Skills

- Prediction and Problem Solving

During class:

- Discuss the Toys in Space project
- Gravity's downward pull dominated the behavior of toys on earth. It is hard to imagine how a familiar toy would behave in weightless conditions. Discover gravity by playing with the toys that flew in space. Try the experiments described in the guide. Decide how gracity affects each toy's behavior. If possible, wa:ch the Toys in Space videotape or study a Toys in Space poster. To check your piedictions, read the results sections of the guidebock. Finish your Toy investigation with a Twenty Toy Questions challenge.
- On April 12, 1985 at 7:59 a.m. CST, the Space Shuttle Discovery transported eleven familiar motion toys into the weightless environment of space. In turn, each toy carried along the questions of all the curious children, teachers, and parents who had suggested toy experiments and predicted possible results. Twenty dollars worth of toys and several hours of free time donated by five enthusiastic astronauts and one space-bound senator brought the experience of weightlessness and an understanding of gravity's pull to students of all ages.
- Select an experiment(s) to investigate.

Extensions
 - Select Other Toys from "Toys in Space Project".

RESULTS
 SPACE SHUTTLE MISSION STS - 51D

Twenty Toy Question Answers:
1-a, 2-c, 3-a, 4-b, 5-d, 6-c, 7-b, 8-a, 9-b, 10-d, 11-b,
12-a, 13-c, 14-d, 15-a, 16-c, 17-a, 18-b, 19-a, 20-c

MOTRODNCTROM

Gravity's downward pull dominates the behavior of toys on earth. It is hard to imagine how a familiar toy would behave in weightiess conditions. Discover gravity by playing with the toys that flew in space. Try the experiments described in this guidebook. Decide how gravity affects each toy's performance. Then rnake predictions about toy space behaviors. If possible, watch the Toys in Space videotape or study a Toys in Space poster. To check your predictions, read the results sections of the guidebook. Finish your Toy investigations with a Twenty Toy Questions challenge.

CREDTS

Toys In Space developer: Dr. Carolyn Sumners, Director of Astronomy \& Physics
Houston Museum of Natural Science
Guidebook layout \& design: Gary Young,
Vela Productions
Poster \& Guidebook illustration: Chris Meister, Vela Productions
Toys In Space videotape production: Pat Schwab, KPRC Television, Channel 2

The illustrations from this Toys In Space Guidebook will also appear in the book Iors In Soace-Leaming Science while Having fun- by Dr. Sumners

All photographs of toys performing in space are courtesy of the National Aeronautics and Space Administration.

THEE TOYS ON SPAGE PRONECT

On April 12, 1985 at 7:59 a.m. CST, the Space Shuttle Discovery transported eleven familiar motion toys into the weightless environment of space. In furn, each toy carried along the questions of all the curious children. teachers, and parents who had suggested toy experiments and predicted possible results. Twenty dollars worth of toys and several hours of free time donated by five enthusiastic astronauts and one space-bound senator could bring the experience of weightlessness and an understanding of gravity's pull to students of all ages.

This toy cargo gave the Space Shuttle one more role in extending human access to the space environment. With the addition of a few pounds of toys, the Shuttle mid-deck became a space classroom where astronauts could teach the nation's children about life in space.

THE TOVS MN SPAGE CREW
COMMANDERKAROLBOBKO -. gyroscope and metal top PILOT DONALD WIULAMS -- paddleball and "Rat Stuff" - the flipping mouse

DR. JEFFERY HOFFMAN
DR. RHEA SEDDON
DAVID GRIGGS
SENATOR JAKE GARN
-- wind-up car, wheelo, and magnetic marbles
-- slinky, ball and jacks
-- yo-yo
-- paper airplane

PHYSNGS BASNES

THE TOYS FROM SPACE

0. GRAVITY: On the earth's surface, all objects experience a downward force caused by the gravitational altraction between the oblect and the earth. THE BEHAVIOR OF ANY TOY ON ENFIH IS ATFECTED TO SONE EXIENT BY GRAVITY PULL
1. MICROGRAVITY: The earth's GRAVITY keeps satellimes and their contents in orbh. The satollties travel so quickly that they do not fall toward the earth. Astronauts inside feel as $\#$ they are falling frecty me a diver jumping off a diving board. This experience is also called "weightiessness" or "zero gravity". Microgravity is the official term because there are small lorces still felt in the Space Shuwle when the spacecraft maneuvers in orbit. THE TOYS ON SHUTIE FLOAT THPOUGH THE CAEN WTHOUT EXPERTENCNGANY DOWWNAFD FOPCE RELATVE TO THE SPACECRAFT.
2. ENERGY CONSERVATION: When an object moves, it has Kinetic Energy. AN ASTRONAUT TRYNG TO MOVE A TOY MUST FND A SOUPCE FOR THE EERGY NEEDED BY THETOY.
3. MOMENTUM CONSERVATION: Objects in motion have momentum. More massive taster moving objects have more momentum. In a collision, momentum is conserved. When one oblect loses momentum, another object must gain momenlum. This momentum conservation is also described as a REACTION FORCE produced by an obiect for every ACTION FORCE acting on the cbica THE RESULTS OF MANY TOY COUSTONS ARE DEIERMMNED BY THIS CONSERVATION LAW.
4. INEZRTIA: Objects in motion tend to stay in motion. Objects at rest lend 10 stay at rest. An astronaut must exert a force to cause a toy to change its motion. It requires more lorce to move an object with more mass. If an astronaut tries to make a loy turn or move in a circle, the inward action lorce exerted on the by is called a CENTRIPETAL FORCE. The outward reaction force proctuced by the toy is called the CENIRIFUGAL FORCE. GRAVIT PPOVIDES THE CENIRTPETAL FORCE THAT KEEPS THESPACE SHUTLE N ORBT.
5. ANGULAR MOMENTUM CONSERVATION: Spinning objocts have angular momentum. More massive, more spread-out, and more rapldly spinning objects have more angular momentum. Angular momentum must be conserved A SPANING TOY WIL CONTINLE SPINNING WITH THE SAME AXIS TLT UNTL Π TRANSFERS SOME OF TS ANGULAR MOMENTLM TO ANOTHER OBECT - SUCH AS I SUPPORTING TABLE.

The manufacturers listed below produce the actual otf-the-shelf toys that flew in space. In many cases an equivalent toy can be used instead.

1. "Rat Stuff": a pop-over mouse by Tomy Corp., Carson, CA 90745. The pop-over kangaroo or gorilla may be used.
2. Yo-Yo: flight model is a yellow Duncan Imperial model by Duncan Toy Company, Baraboo, WI. 53913. Any good sleeper yo-yo will work.
3. Wheelo: flight model by Jak Pak, Inc., Milwaukee, WI., 53201. Other models work as well.
4. "Snoopy" Top: flight model by Ohio Art, Bryan, OH.
5. Any metal top can be used.
6. Slinky: Model \#100 made by James Industries, Inc., Hollidaysburg, PA. 16648. The flight version was "blued" to photograph better.
7. Gyroscope: flight model by Chandler Gyroscope Mig. Co., Hagerstown, IN. 47346. Any wellbalanced gyroscope can be used.
8. Magnetic Marbles: sold in packages of 12 or 20 by Magnetic Marbles Inc, Woodinville, WA. 13 marbles flew.
9. Wind-Up Car: red Camaro from the Darda Toy Company, East Brunswick, NJ. Circular track from larger kit.
10. Jacks: flight set made by the Wells Mig. Cl., New Vienna, OH 45159. Any jacks can be used.
11. Paddleball: flight model by Chemtoy, a division of Strombecker Corp., Chicago, IL 60624. Any equivalent version can be used.

Three motion toys went into space: a wind-up car, a paper airplane, and a flipping mouse. Push the car along a table to wind it up. Release it. Try different surfiaces. On what surface does it go iastest? Tilt the surface upward. How is the speed affected? Would the car move in space?

Make a standard airplane. Fly it forward. Fly it backward. Is there a difference? Nake a runway for your plane. Is it hard to land the plane accurately? Try to make a plane that spins and one that does loops. Discover how ing flaps make a plane turn.

Wind up Rat Stuff, the flipping mouse. Set him on a smooth flat surface. Watch him flip. Tilt the surface. What happens? Make the surface soft. What happens? How does Rat Stuff use the bump on his tail? Put marshmallows on Rat Stuff's ears. Does it change his flip?

Start a gyroscope or tsp spinning. Try to till its spin axis. What happens? Push a spinning gyroscope or top with a string. How coes it move? Try balancing a gyroscope on your finger, on a string, or on another spinning gyroscope. What happens? Watch a top or yyroscope slow down. What happens io the spin axis?

Watch a yo-yo in action - moving down and up the string. Unwind a yo-yo string. Hang the yo-yo at the bottom of the string. Try to make it climb the string. What determines whether or not a yo-yo will climb upward? Where does the yo-yo get the energy needed to climb upward? Give a yo-yo a lot of spin as you throw it downward. Fielax your hand as if reaches the end of the string. Se ii the spinning yo yo will stay there until you jerk your hand to bring li up. Tr': "sleeping" the yo-yo.

Tilt a wheelo up and don. 7 as the wheel rolls. You are using gravity to start the wheel spinning. You can start the wheel without gravity. Experiment to find out how. Remember, you must not tilt the track. Get the wheel spinning and then stop moving the track. Where does the wheel get the energy needed to keep moving? What keeps the wheel on the track as it moves through the bend?
See how fast you can move the wheel. Where on the track does the wheel finally fly off?

EXPEROOAENTT A: TNEE BOUNCCANG BALL
Play paddleball downward, upward, and sideways. Which is easiest? Why? Hit the ball softly. Hit the ball hard. Which works better? Why? Shorten the elastic string. Is it harder or easier to paddle? Why? When is the paddleball ball going fastest?

When playing jacks, you must bounce the ball, pick up a jack, and catch the ball. After picking up all the jacks in this manner, try to pick up two jacks at a time while the ball is bouncing. Then try for threa jacks, four jacks, and so forth. What is the best toss and catch strategy? Would it be easier to play with a very bouncy ball or a flat ball?

See how many marbles you can pick up with just one marble. The more marbles you pick up, the stronger the magnetic force. Toss up groups of marblös arr:inged in lines and circles. Which arrangements are stable? Move two circles of 6 marbles together. What happens when they touch? Turn one of the circles over. Push the circles together again. Does the same thing happen? Roll two marbles into each other. See if you can make them spin. Arrange three marbles in a triangle. Put a fourth marble on top to make a pyramid. Be careful. It can be done.

EXPERROMENOT ©: SLOONRY WOVES

Stretch out a slinky. Move one hand back and forth pushing in and pulling out on the slinky. Watch the waves travel along the slinky. Does the wave stop when it reaches your other hand? Does the whole slinky move from one hand to the other? These compression waves are like sound waves traveling thrcugh the air. Your ear can delect the changes in air pressure as the sound wave strikes your ear drum. Your mind interprets the vibration as sound.

Stretch out a slinky. Move it from side to side with one hand. Watch these waves move along the slinky. This is a transverse wave. Light waves and water waves are transverse waves. What happens to this wave when it reaches your other hand? Move the slinky back and forth faster and faster. See if you can get the wave moving at just the right speed so that at least one place on the slinky stays still as the wave moves up and down around it This is a standing wave.

Regional Math Network • Harvard Graduate School of Education • Harvard University 101

GYROSCOPE AND TOP: In space:

1. Whl a spinning gyroscope or top spin faster or longer?
2. Will a spinning object wobble as it slows down?
3. Will a spirning object move along a string?
4. Il a spinning gyroscopo is swing around in circles by an attached string, how will his axis orient?
5. Will it be possible to start a push knob top?

YO-YO: In space:

1. Can a yo-yo be yo-yoed at any speed?
2. Will a yo-yo return when it reaches the end of its string?
3. Will a yo-yo sleep?
4. What will a yo-yo do when the astronaut releases the string?
5. Which yo-yo tricks will be possible in zero gravity?

WHEELO: In space:

1. Will the magnetic wheel still stick to the track?
2. Can the wheel's motion be stated and maintained?
3. Will the wheel continue to move on the track when the track is released?
4. Will the wheel continuse to spin?
5. How will the wheelo system inove when released?

MARBI.ES: It, space:

1. If el marble chain is swung in circles, where will it break?
2. What will happen to two marbles that, se lossed together?
3. What will happen when two rings of 6 marbles collide?
4. Will floating or lossed marbles stay logether?
5. What will happen when a mable attaches to a marble chain?

SLINKY: In space:

1. Will a slinky ivalk?
2. What will happen when the slinky is stretched apart and released?
3. Can a slinky be rocked from hand to hand?
4. Will a slinky carry transverse or compression waves?
5. Can sta. ling waves be tormed in a slinky?

PADDLEBALL: In space:

1. Will a paddleball's speed be faster or slower?
2. Will h be as easy to paddo in any disction?
3. Will a ball on a stretched string return to the padde?
4. Will a paddeball player change his styla?
5. II a paodiebell is roleased after the ball is hit, will the paddebal paddio theel?
PAPER ARPLANE: In spaco:
6. Will a standard paper arplane soar as well as in does on earth?
7. Can a paper aiplane be flown as well backward as forward?
8. How will a paper airplane behave when released with no push?
9. What will happen to a paper airplane when I reaches a wall?
10. Can a paper airplane be trrown so that it makes a loop?

CAR ON CARCULAR TRACK: In spece:

1. Will urning wheels make the car move on a table?
2. Will a pushed car move forward?
3. Will there be friction between the car's wheek and the table?
4. Will a wound-up car move along a circular track af a constant speed?
5. Will the wheels of a triction car tum as the car moves along a circular track?

JACKS: In space:

1. Will the ball bounce?
2. Will a moving ball slow down and speed up tike it does un earth?
3. What will happen to the jacks when they are released?
4. How must the niles be changed for a game of lacks?
5. How will a spinning jack behave?

FLIPPING MOUSE ("RAT STUFF") In space:

1. Will Rat Stuft flip over?
2. Will Rat Stutf be able to tlip off a wall?
3. Will Rat Stuff return to the table after a llip?
4. At what angle will Rat Sutt leave a wall?
5. After Rat Stuff leaves a wall, will he continue to flip?

TNE SPACE PLANEE:

In space a paper airplane will soar farther than on earth. The airplane's shape is important. It must be aerodynamic. It will fly forward, but will NOT fly backward. When the airplane is released with no push, the airplane will drift in the air currents. When an airplane hits the wall, it will bounce off and float backward. In space, an astronaut can blow on a paper airplane to make it fly. A paper airplane should loop in space allhough no looping airplane was tried on Mission 51D.

If a standard paper airplane is released with a sideways push, the airplane will twist to the right or left as it soars forward.

THE SPACE JACKS:

Playing jacks is a very different game in space. When the jacks player opens her hand, the jacks stick a bit to her fingers. As thoy leave her hand, they have some of the momentum from her opening fingers. This momentum makes the jacks drift apart. The jacks player must act quickly before the jacks move beyond her reach. If a more massive ball hits a lighter jack, it will cause the jack to fly away at a much faster speed. In a space jacks game, a dropped ball will not fall. The astronaut must throw the ball toward a wall and wait for the bounce and return. Any wall or the ceiling or floor can be used as a bouncing surface. The ball can also be tossed at any speed. Some minimum speed must be set so that the game is still challenging. If a tiny jack is given a spin, it will behave like a tiny gyroscope - keeping its :,pin orientation as it drifts through the air.

Once while collecting jacks, Astronaut Seddon lost her footing. As she grabbed for the jack, her momentum carried her forward. She tucked her body and caused a rolling motion and a flip as she conserved angular momentum.

In space paddling a paddleball is much easier. The activity can be done in any direction. The ball will float outward as it gently stretches its string. Afterward it will return to the paddle. The whole activity appears to be in slow motion. To get the ball to return to the paddle instead of falling toward earth, the paddleball player must hit the ball much harder on earth than in space. The paddleball player's space style is more deliberate and graceful. If the ball and paddle are stretched apart and released, they will come back together. The paddle will twist because the string is not connected to the paddle's center of mass. As a result, when the ball reaches the paddle, the paddie is turned so that the ball passes by without any collision.

If the paddle is released after the ball is hit, the ball will reach the end of its stretch and return toward the paddle. Meanwhile the paddle will be pulled forward by the elastic string. Astronaut Don Williams was able to get the hall to return and bounce off the paddle once after he released the paddle.

In space, the slinky will not walk. Instead it always returns to the hand holding onto it. The slinky coils can be pushed from hand to hand much as is done on earth. The space slinky can perform a yo-yo-like behavior. The astronaut pushes the yo-yo forward. The slinky moves outward until the coils are stetched. The spring action pulls the coils back toward the astronaut and outward behind him as the slinky's behavior repeats. If the slinky is stretched apart and released, it will come together and then turn slowly.

Astronauts Jeff Hoffman and Rhea Seddon discovered that the slinky will carry compression waves and transverse waves. When the coils on one end of the slinky are squeezed together and released, a compression wave travels along the slinky. When one end of the slinky is swung sideways, the slinky will carry a left to rigr,' transverse viave. When a wave reaches the end of the slinky, it will bounce back along the slinky. If the compression wave or transverse wave is continually sent along the slinky, a place or places on the slinky may stand still as the wave moves around them. This is called a standing wave, and the non-moving spots are called nodes.

THEE SPACE COARBLES:

When two marbles are pushed together in space, they stick and begin to spin around their joining point. Tossed and fioating marbles will stick together. As other marbles are pushed into the chain, they will attach to one end and cause the whole chain to oscillate. If enough marbles are added to the chain, the chain will move about so wildly that the two ends will come close enough for their magnetic attraction to close the chain into a circle. When the marble chain is swung around, inertial forces of the marbles trying to move in a straight line cause the chain to break. The chain always breaks between the first and second marbles - the ones closest to the center.

Astronaut Hoffman discovered that three things can happen when two six-marble circles are pushed together. The circles can repel. The circles can attach to form a figure-eight. The circles can attach to form t a large circle.

"RAT STMFF", TME FLOPPMAMCOMOUSE

In space Rat Stuff could not stay on the wall long enough to flip. The astronauts used hand-cream to make the mouse's feet sticky enough to adhere to the wall. By the mission's end, the mouse also had a small strip of velcro to hold him to the velcro patches on the cabin wall. Astronaut Don Williams deployed Ra! Stuff by winding it up and sticking it to the wall with a blob of hand cream as big as a pencil eraser.

When Rat Stuff leaned forward and then jerked backward, its feet pushed against the wall. The wall reacted by pushing the mouse away in a straight out motion. The mouse continued to flip as it sailed quickly across the cabin.

In space a spinning gyroscope can reach about the same spinning speed as it does on earth. Its spinning will cause its support cage to spin. Because there is no friction with a support surface, the gyroscope will spin much longer. . Only air resistance gradually slows down the spinning space gyroscope. Gravity causes the wobble in a gyroscope or top. This wobble (officially called Precession) increases as the gyroscope slows down on earth. In space there is no force to cause a wobbling motion. When touched by a string, a spinning space gyroscope reacts by floating away. When attached to a string and swung around in circles, a spinning gyroscope will orient its axis to be perpendicular to the string.

In space a push-top comes back up when the astronaut pulls up on the knob. To start the top, one hand must push downward on the top while the other pumps the knob up and down. For this reason, the top cannot

Commander Bobko demonstrated the value of gyroscopes by starting his gyroscope spinning and then circling around it. As he moved around, the gyroscope kept its orientation. There are gyroscopes inside the Shuttle's computer instrumentation that tell the Commander about the orientation of the Shuttle as it circles the earth.

THE SPACE WHEERLO:

Magnetism is the same in space as on earth, so the wheel does stick to the track. By singing the wheel sideways in a circular arc, Astronaut Hoffman could start the wheelo using a combination of inertia and centripetal force. In conserving momentum, the wheel will continue moving along the track after the track is released. It will continue spinning to conserve angular mol. .ntum. It transfers some of its angular momentum to the track as the track also begins to turn.

If the wheelo is released as the wheel is moving away, the wheel will pull the track away with it -- especially when the wheel turns the curve in the track.

SPACE GAR ON A CURGULAR TRACR.

The car carried into space had an engine that could be wound-up by turning the wheels. On earth, when the engine is wound-up and released, it turns the wheels to make the car go forward on a suriace. The car can also be pushed to make it go forward. In space there is no force to hold the car to a surface and, therefore, no friction. When the wound-up car is released, its wheels spin uselessly as the car floats in the air. When the car is pushed forward, it floats across the cabin. but its wheels do not turn.

When a wound-up car is placed in a circular track, it begins to move forward. The track pushes in on the car to make it turn. The car reacts to this inward push by pushing outward. Once these two forces are produced, the car sticks io the track and friction occurs. With friction, the car's wheels have traction, and their turning motion makes the car move. The car's motion on the circular track slows down as the car transfers its kinetic energy of motion to the heating up of the wheels and track.

TWENTM TOY OUESTNONS

1. In space, paddling a paddleball upward is
__as easy as'padding downward.
_impossible.
__very difficult.
_much faster than paddling downward.
2 In space, the paddleball ball has its greatest spead when it is __farthest from the paddle.
closest to the floor.
__hitting the paddle.
__stretched away from the paddle.
2. When a wound-up toy car is released in space, its wheels ___spin rapidly in place. _move the car forward.
__ub against the table as the car moves.
__cause the car to turn lips.
3. In space, a toy car moving on the inside of a circular track will ___keep its speed. slow down.
have non-turning wheels.increase its speed.
4. When a paper airplane is thrown backward in space, it __makes a loop.
__does a banked curve.
__flies as well as it does going forward. _lumbles.
5. When compared with earth flight, a space plane
\qquad
\qquad fies faster.
___dives more easily.
__fies a straighter path.
\qquad is more difficult to fly.
6. When you release a ball in space, it
_falls.
-floats.
spins.
__sticks to the cabin wall.
7. Why is it difficult to play space jacks?

The jacks move apart.
_The ball does not bounce.
_-The jacks stick together.
__The ball moves too fast.
9. What is Rat Stuff's problem as he tries to flip oft a wall?
__His spring will not wind in space.
He floats off the wall.
_His head will not bend fowward.
_His legs kick forward.
10. What is the direction of Rat Stuff's motion as he leaves the wall? __toward the ceiling
in a back:
_in a forward arc
__straight out
11. To start a top with a push knob in space, you must remember to __start the top upside down.
_Hold the top down. push down harder on the knob.
_-pull up more quickly on the knob.
12. A gyroscope's spin causes it to resist any force that would __retilt its spin axis.
__keep it floating in space. move it through the cabin. prevent its wobbling.
13. In space an astronaut can yo-yo
at slow speeds only.
__at last speeds only.
at any speed.
when the loop around the yo-yo shatt is tight.

Regional Math Network • Harvard Graduate School of Education • Harvard University
14. \boldsymbol{H} is impossible for astronauts in space to do yo-yo tricks where the yo-yo must

change direction

_be thrown side-arm.
move slowly.
stay at the end of the string.
15. In space a wheelo can be slated by
slinging the track sideways.
tiking the track down.
tilting the track up.
placing the wheel at the loop in the track.
16. The wheel stays on the wheelo track in space because of its _ spin.
inertia.
_magnelism.
_mass.
17. When two magnetic marbles corne logether in space, they __spin around each other.
repel.
__bounce apart.
__orbit at a distance.
18. When two rings of six marbles collide in space, they
__always repel.
_can form one large ring.
_must form a ligure-eight.
_can break info a long chain.
19. In space a slinky will NOT
__walk.
-_carry waves.
come ligether when strelched.
vibrate when shaken.
20. When a slinky is stretched apart in space,
it sags.
_it stays stretched out. _its coils spread apart evenly.
its coils collect at the ends.

TOYS ON SPAcE

THE RESULTS FROM SPACE
as well as
EARTH-BASED EXPERIMENTS AND ACTIVITIES

MODULE IV: THE SPACE COLONY
The Threshold for Exploration

From Known to Unknowii
Where Shall We Locate?
Living on the Colony
What Will the Colony Be Like?
What Next?

FROM KNOWN
 TO UNKNOWN

Preparation/Materials

- The Colony Connection
- Review the "All You Nerd to Know About Space Colonies" in the Fact Book.

Math Skills

- Order of Operations
- Graphing Data

During class:

- Discuss the need for a space station or space colony in order to pursue space exploration. Include the following information:
- The shuttle can bring us only so far in the solar system.
- The colony serves as a home base for future voyages.
- The colony/station rockets can be built for further travel.
- Explain to students that they will be designing their own space colonies.
- Discuss the questions that must be resolved before a colony can be buit:
- What will be its purpose?
- How many and what kind of people will live there?
- Does it need to be self-sustaining?
- What are the limitations of living in space?
- What is its location relative to earth?
- Should it be permanent?
- Would you like to live on a space station?

Extensions

- Discuss similanties/differences of living in space stations to living on earth.
- Journal Entry: What philosophy should govern the space station?

The Colony Connection

Regional Math Network • Havvard Graduate School of Education • Harvard University

Name THE COLCNY CONNECTION

Solve each problem, using the rules for order of operations.
Do the problems in order from A to TT.
The solution to the problem represents the numbers you should connect on the drawing. For example, the solution to A is 23 . Start with 23 . The solution to B tells you the next number to which you should draw your line.
A. $1+(11 \times(8 / 4))=23$
B. $6+40 / 5-((1 / 3) \times 30)=4$
C. $(13-3) / 5=$
D. $10 \times 2+2^{\wedge} 2=24$
E. $3^{\wedge} 2 \times(16 / 4)-5=$
F. $(4 \times 5)+(10 \times 2)-3=37$
G. $8 \times 6-26+4=26$
H. $3 \wedge 3-5 \times 2=17$
l. $12 \times 3-7 \times(6-1)=1$
J. $30+(30 \times(1 / 3))=40$
K. $11 \times(15 / 5)=33$
L. $(1 / 3) \times 75+10=35$
M. $17-2+20-29=\frac{35}{6}$
M. 17-2+20-29
N. $[6+(8 / 2)]+5=$
O. $32-[(12 / 4)+2]=77$
P. $(12 \times 3)+(18 / 9)=36$
Q. $(4+2) \times 7-6=36$
R. $4+(49+1) \times 1 / 2=29$
S. $42 / 6+5-(10 \times(1 / 2))=$
T. $((1 / 2)+(3 / 2)) \times 8-2=7$
U. $5^{\wedge} 2+2 \times 3-(2 \times 11)=1$
V.
V. $(25+5) \times 7-1=34$
$\mathrm{W} .20+[(3 \times 8)+2]=46$

THE COLONY CONNECTION

Solve each problem, using the rules for order of operations.
Do the problems in order from A to T.
The solution to the problem represents the numbers you should connect on the drawing. For example, the solution to A is 23 . Start with 23 . The solution to B tells you the next number to which you should draw your line.
A. $1+(11 \times(8 / 4))=$
B. $6+40 / 5-((1 / 3) \times 30)=$
C. $(13-3) / 5=2$
D. $10 \times 2+2^{\wedge} 2=$
E. $3^{\wedge} 2 \times(16 / 4)-5=$
F. $(4 \times 5)+(10 \times 2)-3=$
G. $8 \times 6-26+4=$ \qquad
\qquad
H. $3^{\wedge} 3-5 \times 2=$
l. $12 \times 3-7 \times(6-1)=$ \qquad
J. $30+(30 \times(1 / 3))=$
K. $11 \times(15 / 5)=$
L. $(1 / 3) \times 75+10=$
M. $17-2+20-29=$
\qquad
N. $[6+(8 / 2)]+5=$
\qquad
O. $32-[(12 / 4)+2]=$
P. $(12 \times 3)+(18 / 9)=$ \qquad
Q. $(4+2) \times 7-6=$ \qquad
R. $4+(49+1) \times 1 \overline{12}=$
S. $42 / 6+5-(10 \times(1 / 2))=$ \qquad
T. $((1 / 2)+(3 / 2)) \times 8-2=$ \qquad
U. $5^{\wedge} 2+2 \times 3-(2 \times 11)=$ \qquad
V. $(25+5) \times 7-1=$
W. $20+[(3 \times 8)+2]=$ \qquad
X. $\quad(18-8) \times 2=$
Y. $\quad 1 / 2 \times(3+3 \times 7)=$
Z. $2 \times(6+5)=$ \qquad
AA. $45-8 \times 5=$ \qquad
BB. $\left(4^{\wedge} 2-6\right)+11=$
CC. $4^{\wedge} 2+8-(3 \times 7)=$ \qquad
DD. $(100 / 2)-3^{\wedge} 2=$
EX. $100-(25 \times 3)-17=$
FF. $(1 / 2) \times[4 \times 20]+3=$ \qquad
GQ. $3 \times 7+(8 / 2)=$
HM. $2^{\wedge} 3-6+11=$
II. $(42 / 6) \times 4+2=$ \qquad
JJ. $200 / 10-5 \times 2=$
KM. $4 \times[3+(8 / 2)]=$
\qquad
LL. $(20 / 2) \times 4-1=$
MM. $32+16-(2 \times 2)=$ \qquad
NS. $4+(3 \times 5)=$
OO. $6+[(10 / 2)+5]=$ \qquad
PP. $(4 \times 3)+(12 / 2)=$ \qquad
QQ. $(10-3) \times(18 / 3)=$ \qquad
RR. $6+(13 \times 2)=$
SS. $[40+(2 \times 10)]-(3 \times 5)=$ \qquad
TI. $9 \times 3+3-19=$ \qquad

Preparation/Materials
 - "Where Shall We Locate?"

Math Skills

- Scale Models and Scale Drawing

During class:

- Choose a location for the space colony. Discuss the reasons for making this choice.
- Locate the position of the space station on "Where Shall We Locate."
- Pose the following question to the students:
-Imagine you were to telephone a friend and want to describe the position of your colony. How would you describe its location?
- Describe the location of the colony in relation to the other planets:
- Is it among inner or outer planets?
- What is its distance from earth?
- Name the closest planet?
- What is the distance to closest planet?
- What is its distance from sun?

Extensions

- Journal Entry:
- What do you hope for your colony?
- How will it be like earth?
- How will it be different?

Name:
Description of your colony's tocation:
Is it an intrer or outer planet?
Distance from Earth
Nearest planet \qquad
Distance to nearest plane
Distance to Sun \qquad

LIVING ON THE COLONY

Preparation/Materials	Math Skills - Solar Cells
	Estimation in Computation Measurement Area

During class:

- Discuss the features that must be planned for living on a colony:
- Is there gravity? How will it be produced?
- Is there air? How will it be created?
- What about energy?
- What percent of space should be allocated for various tunctions:
- living
- exercise and recreation
- agriculture
- technical laboratories
- Focus on the energy i.ssue. Discuss that energy will be obtained from the sun, using solar panels.
The panels collect and transform solar energy to electrical energy.
- Point out to the students that the amount of energy needed by the colony must be estimated, so that an appropriate number of solar panels can be provided.
- Explain that the students must estimate the number of solar panels needed to meet the energy needs of the cotony on a daily basis.
- First, students must project the number of watts used per month for a family of 4.
- Next, students calculeite the approximate number ur watts used per day by a family.
- Finally, students should project the needs for the entire colony.

Extensions

- Solar Cells
- Explore the other features of living on the colony: gravity, "air," use of space.

SOLAR CELLS.... POWER FROM THE SUN

SOLAR CELI.S CONVERT THE ENERGY OF SUNLIGHT DIRECTLY INTO ELECTRICAL ENERGY

FOR A CERTAIN SOLAR CELL, AN AREA OF 1 SQUARE INCH RECEIVES IN DIRECT OVERHEAD SUNLIGHT ABOUT 0.65 WATT OF POWER

1. Approximately how many solar cells would be needed to generate the light of a 60watt light bulb?

What are the possible dimensions of a rectangular solar cell surface for the 60 -watt light bulb?
2. A typical home, with a family of 4 , used 124 kilowatt hours during June (One Kilowatt is one thousand watts).

How many inches of solar cells are needed to generate this power?
What are the possible dimensions of the soiar cell surface for 124 kilowatts?
3. Estimate your home's energy requir ments for a year.

How large a solar panel would you need to generate the energy needed?

Name \qquad Name \qquad

SOLAR CELLS....

?OWER FROM THE SUN

SOLAR CELLSCONVERT THE ENERGY OF SUNLIGHT DIRECTLY INTO ELECTRICAL ENERGY

FOR A CERTAN SOLAR CEUL
AN AREA OF 1 SQUARE INCH
RECEIVES IN DIRECT OVERHEAD SUNLIGHT
ABOUT 0.65 WATT OF POWER

1. Approximately how meny solar cells would be needed to generate the light of a 60 watt light bub? 12 cells
What are the possible climensions of a rectangular solar cell surface for the 60-watt light bulb? perimeter must be 4×92 inches
2. A typical home, vith a famlly of 4 , used 124 kilowatt hours during June (One Kilowall is one thousand witts).

How many inches of solar cells are needed to generate this power? $\approx 191,000 \mathrm{sq}$. in.
What are the possible dimenslons of the solar cell surface for 124 kilowatts?
3 Estimata your home's energy reouiraments for a year
How large a solar panel would you need to jenerate the energy needed?

Regional Math Notwork - Hervard Gradume School de Edicalion - Harvard Unvershy

SOLAR CELLS A SOURCE OF ENERGY

Solar cells are made in various shapes to utilize the greatest amount of lateral area.

A certain circular solar cell, with a radius of r, will produce 5 watts.

1. If the radius were $!0$ inches to produce 5 watts, what output would be produced if the radius ware 20 inches?
If $r=10, A=\pi\left(10^{3}\right) \approx 100 \pi$
If $r=20, A=T\left(20^{\circ}\right)=400 r$, there output $=20$ wetts
Would the output be doubled? Why? Why rot?
No, denbling the radius quadruples the area.
How many times greater would the output be if the radus were 100 inches?

$$
100 \text { times bigger }
$$

2. Find the dimensions of a square solar cell which would have the same
output as a circular cell of radius 10 inches.
$S=l e n-1 \prime n$ of sides in mehes

3. Find the dimensions of a solar cell shaped as an equilatemal tiangle wich would give the same output as a circular cell of radius 10 inches

Solar cells are made in various shapes to utilize the greatest amount of lateral area.

A certain circular solar cel', with a radius of r, will produce 5 watts.

1. If the radius were 10 inches to produce 5 watts, what output would be produced if the radius were 20 inches?

Would the output be doubled? Why? Why not?

How many times greater would the output be if the radius were 100 inches?
2. Find the dimensions of a square solar cell which would have the same output as a circular cell of radius 10 inches.
3. Find the dimensions of a solar cell shaped as an equilateral triangle which would give the same output as a circular cell of radius 10 inches.

WHAT WILL THE COLONY BE LIKE?

Preparation/Materials

- Build as a sample some geometric solids using panels and elastics
- Duplicate copies of Geometric panels on construction paper
- "My Space Colony"
- Scissors
- Elástics

Math Skills

- Measurement : Surface Area
: Volume
- Scale Models + Scale Drawing
- Spatial Problem Solving

During Cliss:

- Group the students into small teams.

Each team will design and build their own space station using geometric solids.

- The space station will be designed as a senies of sections, which will be called "pods."

Each "pod" will be a simple geometric solid made from triangular or square panels and elastics.

Show one Pod, defining "face," "edge," and "vertex."
The pods will be attached together to form various configurations of a larger space colony.

- Ask the students to design a configuration for the space colony, using the solids, considering:
- the purpose for each space
- the ease of building the station in space
- the total surface area exposed to space
- the amount of "inside" space

Extension

- Ask students to determine a technique to describe or represent their configuration on a two dimensional drawing, a "hlueprint" for the configuration.
- Write a rationale for the station and its design relative to its purpose and philosopity.
- "A Cubic Colony"

$$
18: J
$$

MY
 SPACE COLONY

1. Make a model of the initial section of your space station, using 3 solids. Describe the section:
a. What solids did you use? How did you join them together?
b. Total number of faces of the exterior:
c. Total number of edges of the exterior:
2. Determine the dimensions of your initial "pod"
a. T tal lengths of edges (the length of "structural beams"):
b. Surface area:
c. Volume (in terms of the number of 1 " cubes that would fit in it):
3. Make three ponds exactiy like those in your initial section of the space station. Make a new solid with the maximum number of faces on its exterior.
Describe it.
4. Choose three more pods like the original one. Make a new solid with the minimum number of faces on its exterior. Describe it.
5. Compare the volume and surface area of the 3 structur's you made:

Section	Approximate Surface Area	Approximate Volume in cubic inches
Original Structure		
Structure with maximum exterior faces		
Structure with minimum exterior faces		

A CUBIC COLONY

The Cubic Colony is a space station built only with cubes.

Each space station has a set of plans. Tihe plans show the base of the station, a view of the station from the front, and a view of the station from the right side.

Match each station with its plans.

Plans

Base
Front
Right View

PlanA: STATION B

Station A

Plan B: STATION C

Plan C: STATION A

\qquad

A CUBIC COLONY

The Cubic Colony is a space station built only with cubes.

Eäcin space station has a set of plans. The plans show the base of the station, a view of the station from the front, and a view of the station from the right side.

Match each station with its plans.

Plans

Base

Plan A:

Station A

Front

Plan B:

MORE CUBIC COLONIES

Draw the floor plans for these colonies．
1.

H
\square
3.

Front
Right View
 H

 $\#$

四

Using these views，build the colonies．
4．a．

b．

BASE FRONT
RIGHT
c．

base front right
d．

base front right
\qquad

MORE CUBIC COLONIES

Draw the floor plans for these colonies.
1.

Base
Eront
Bight View
3.

Using these views, build the colonies.
4. a.

BASE FRONT RIGHTT
b.

$\theta \quad \square \quad \square \quad \square \square$BASE FRONT RIGHT
d.

BASE FRONT RIGHT

WHAT'S NEXT?

Preparation/Materials

- Build a sample space station using cubes
- Draw blueprints for a sample space station
- "Various Space Stations"
- Cubes
- Graph Paper

Math Skills

- Geomatry
- Spatial Visualization

During class:

- Discuss the following questioris about what the space station would be like after one year:
- What did you learn?
- How maily babies were born?
- How many people came?...left?
- What problems did you face and how did you solve them?
- Have people found it too difficult to live there?
- Would you stay on for another year?...ten years?
- Discuss whether we have found any life in our travels.
- If there is no life in our solar system, what next?

4

Bibliography

MATH/SPACE MISSION

BIBLIOGRAPHY OF RESOURCES

Our Solar System

- Readings
- Recreational Readings
- Films and Media
- Posters
- Computer Software
- Magazines

Space Exploration

- Readings
- Recreational Readings
- Films and Media

Space Colonies

- Readings

Math and Science Extensiorıs Community Resources

Selected Order Forms

Our Solar System

Readings:
A HISTORY OF ASTRONOMY FROM THALES TU KEPLER, J.L.E. Dryer, New York: Dover
Astronomical ideas from ancient Egyptians to Kepler.
ASTRONOMY, Richard Whittingham, Illinois: Hubbard Press, 1971. Discusses the moon, planets, sun, stars, asteroids, galaxies. Excellent charts, diagrams for reference work. Also discusses instruments and techniques of observing and recording celestial phenomena.

BLACK HOLES AND OTHER SECRETS OF THE UNIVERSE, Christoper Lampton, New York: Franklin Watts, 1980.
Discusses black holes, quasars, pulsars, red giants, white dwarfs.
SPACE BOOK FOR YOUNG PEOPLE, Homer E. Newell, New York: McGraw-Hill Book Co., 1968.
Excellent resource for teachers and some students. Includes not only discussion of planets, comets, asteroids, etc. but also explains big numbers (exponential notation) and small numbers, the ellipse, effects of gravity, comparing volumes and sizes.

SPACE SHOTS:AN ALBUM OF THE UNIVERSE, Fred Hapgood, New York: Time Books, 1979.

Beautiful full page photographs of the planets, galaxies, supemovae, etc., with text.
SKY ABOVE AND WORLDS BEYOND, Judith Herbst, New York: Atheneum, 1983. Tour of the universe, planets, comets, meteors, etc. Excellent chapters on how ancient people tracked stars and searched for life in space. Informal style and humor make it pleasantly readable for students and teachers. Separate chapters could be used for research or reports.

THEAMAZING UNIVERSE, Herbert Friedman, Washington, D.C.: National Geographic Society.
200 illustrations. Topics discussed include planets, stars, galaxies, black holes, cosmic order, search for life. Advanced reading level.

IHECOSMIC CONNECTION, Carl Sagan, New York: Dell, 1975.
Astronomer Sagan writes about such amazing things as preparing the way for contact with intelligant beings on planets of other stars, space vehicle exploration of the solar system, the search for life on Mars, and duplicating the steps that led to the origin of life on Earth 4 billion years ago.

Our Solar System

IHE DISCOVERY OF OUR GALAXY, Charles A. Whitney, New York: Alfred A. Knopf, 1971.

Relates discoveries of great astronomers from ancient times to present day. Good resource material for teacher or student report. Advanced reading level.

IHE SILVER BURDETT COLOR LIBRABY: SPACE, lan Ridpath, New York: MacMillan Publishers, 1983.
Excellent large photographs; topics include sun, stars, moon, planets, galaxies, observatories, rockets, satellites, uses of space.

THE SKY OBSERVER'S GUJDE, R. Newton Mayall, Margaret Mayall, Jerome Wyckoff, New York: Golden Press, 1971.
Information about planets, stars, comets, tips on observing the heavens, auroras. Excellent resource.

THE UNIVERSE, David Bergamini, New York: Time-Life Books, 1970.
Chapters include Early Explorers of the Heavens, Mighty Instruments to Probe the Skies, Planets, Asteroids, and Comets, The Nuclear Fumace of the Sun, What our Galaxy is Made Of, The Birth, Life and Death of Stars, The Cosmos Beyond the Milky Way.

IHE YOUNG SCIENTIST BOOK OF STARS AND PLANETS, Christopher Maynard, Saint Paul, Minnesota: EMC Corp.
Many photographs, diagrams, charts, introduction to solar system, suggested experiments. Excellent resource for teacher and students. Reading level Grade 6.

ELEMENTARY SCHOOLAEROSPACE ACTIVITIES. A RESOURCE FOR TEACHERS, NASA, 1977.
 Provides an approximate chronological development of the story of man and flight, with an emphasis on flight into space. Specific activities are described for students of particular ages to introduce them experientially to basic concepts.

THE SHAPES OF TOMORROW, NASA, 1967.
Focuses on use of geometric concepts as they apply to space and space exploration issues (secondary focus).

WHATS UP THERE, NASA, 1964.
A source book on space-oriented mathematics (grades 5-8).

Our Solar System

SUN, EARTH, AND M/N, NASA, 1982.
Reports on the quest of knowledge of Sun-Earth Relationships.
Duplicating masters an trarısparencies:
THE SOLAR SYSTEM AND SPACE TRAVELFOR GRADES 5 TO9, St. Louis, Missouñ: Miliken Publishing Co., 1970.

Recreational reading:

BETWEEN PLANETS, Robert A. Heinlein, New York: Ace, 1951.
Robert Heinlein shows us how it feels to be living far in the future - to be a citizen of an Interplanetary Federation. He depicts what might happen under such an organization if it were to disregard the rights of the individual.

FANTASTIC VOYAGE, Isaac Asimov, Now York: Bantam, 1966.
A James Bond type story about a medical team that travels in a miniaturized spaceship through the blood stream of a famous scientist in order to dissolve a blood clot threatening the scientist's life.

LROBOI, Isaac Asimov, New York: Signet, 1950.
A collection of short stories about robots. Asimov invented the "Three Laws of Robotics" and uses them in these stories.

OTHER WORLDS, Car Sagan, New York: Bantam, 1975. Is there life out there? Our first steps into space have already shown us other worlds stranger than anything in science fiction. This book presents some of Sagan's ideas on the galactic telephone and the cosmic clock, whether there are big beasts on Mars, the speed of light as a barrier to space travel, and fringe science such as UFOs, astrology, and "chariots of the gods."

BOCKET SHIP GALILEQ, Robert Heinlein, Now York: Ace, 1947.
A thrilling story of three boys who accompany a scientist on the first piloted rocketship flight to the moon. The time is several years from now. The action is based on scientific fact, and much of it may come true before long. The illustrations have been carefully worked out under Heinlein's supervision, and they are as accuraie as it is possible for "projected illustrations" to be. Heinlein is in the top rank of science fiction writers, and his unusual stories for adults have attracted much attention. This, one of his many books for children, is even more fascinating than the stories of Jules Verne.

$1: 3$

Our Solar Systen

Films and media:

The Universe, 30 minute videocassette in color available in VHS or BETAMAX, narrated by William Shatner. This film uses actual NASA photographs and animation to explore our solar system and its planets, to travel through the Milky Way Galaxy into deep space, to discuss theories on the evolution of the universe, pulsars, quasare, black holes, solar wind and super novae. The film also gives a dynamic presentation of the sun as a powerful nuclear furnace.

Previewer's Comment:

Universe offers a dramatic way to capture the excitement of space. Students will benefit from a second showing in the science class where the science teacher can provide (student)s with definitions of some terms and explanations of some concepts. Students may be assigned research projects regarding this material from the science teacher.

Available From:
Fintay-Holiday Film Corp.
PO Box 619
Whittier, CA 90608
$\$ 39.95$ plus tax and shipping charges.
Great Space Race, a television series shown on public television; 4 one hour programs. Part I: Payload in the Sky, Part II: Unlocking the Universe, Part III: The Earth Below, Part IV: The Next Civilization. Part II: Unlocking the Universe is of particuliar interest. It is a one hour program describing our solar system and space phenomena such as super novae, black holes, white holes, Red Giants, worm holes and dark matter.

Previewer's Comment:

This is a very exciting presentation. th is more than most adults can absorb in one sitting but the visual presentation is so dramatic that it is very stimulating. Viewer's Guide is available which gives a brief summary of facts, theories, and issues for consideration. A Space Technology Time Line is included. This series has been shown on Channels 2 and 11.

Available From:
Pacific Productions
Suite 425
Washingron, D.C.

$$
1: 16
$$

Space Exploration

Readings:
IHE SPACE SHUTTLE OPERATOR'S MANUAL, Kery Mark Joels, Gregory P. Kennedy, New York: Ballantine Books, 1982.
An excellent resource in which the reader takes the role of shuttle pilot. All aspects of the flight are realistically described.

ALBUM OF SPACEELIGHI, Tom McGowen, Chicago: Rand McNaly and Co., 1983. Excellent illustrations, one-page descriptions.

ENTERING SPACE: AN ASTRONAUTS ODYSSEY, Joseph P. Allen, Tokyo: Stewart, Tabori, and Chang, Dai Nippon Printing Co., Ltd.
Beautiful photographs and description by astronaut Joseph Allen of what it is like to circle the earth at $17,000 \mathrm{mph}$.

EINDING OUT ABOUT OUR EARTH. SUN MOON AND PLANETS. ROCKETS AND SPACEFLIGHI, Washington, D.C.: NASA
Designed for young readers but includes excellent diagrams ind drawings to answer many questions children ask. For example, how rockets work, why astronauts wear space suits, etc.

HOW DO YOU GO TO THE BATHROQMIN SPACE?, William R. Pogue, Now York: Tom Doherty Associates, 1985.
Excellent resource, easy reading, question and answer format, highly recommended. Author William Pogue is an American astronaut who spent 84 days in space.

MY FIRST BOOK OF SPACE, Rosanna Hansen, Robert A. Bell, New York: Simon and Schuster, Inc., 1982.
Excellent photographs, paintings, and diagrams developed in conjunction with NASA. Includes discussion of planets, asteroids, comets, meteoroids. Large print.

NATIONAL GEOGRAPHIC, Vol. 164, No. 3, September 1983, "Satellites that Serve Us" p. 281 and Spacelab, p. 301.

Vol. 163, No. 6, June 1983, The Once and Future Universe, p. 704.
ORBITING THE SUN: PLANEIS AND SATELLITES OF THE SOLAR SYSTEM, Fred L. Whipple, Cambridge, MA: Harvard University Press.
Teachers' Resource book. Chapters include: The Moon's Influence on the Earth, Weights and Measures, How the System Holds Together, and discussions of each planet.

OUTOF THE CRADLE: EXPLORING THE FRONTIERS BE:'OND EARTH, William K.
Hartman, Ron Miller, Pamela Lee, New York: Workman Publishing, 1984. Color paintings, photographs and text.

$$
193
$$

Space Exploration

THE SPACE PROGRAM: PROVIDING DOWN TO EARTH BENEFITS, Oltice of Govermment Relations, Space Transportation and Systems Group, Rockwell International, Downey, CA 90241, Pub 2459-F Rev 10-83.
Report that provides an overview of the space program including space applications, economic benefits, shuttle missions, and shuttle applications. Short paragraphs, outline form, graphs, charts, photographs.

THE SPACE PROGRAMOUIZANDF ` IT BO2K, Timothy B. Benford and Brian Wikes, New York: Harper and Row, 1985.
An interesting collection of little-known details, odd facts, anecdotes, vignettes and superiatives served up in an entertaining and educatir nal format. Introduction by Frank Borman.

SPACE SHOTS, SHUTTLES AND SATELLITES, Melvin Berger, Now York: G.P. Putnam's Sons, 1983.
Includes chapter on becoming an astronaut, countdown (steps to launching and touchdown of test space flight of Columbia 1981), scientific, weather, and military satellites.

SPACE SHUTILE, Robin Kerrod, New York: Gallery Books, 1985.
Beautiful photographs with some text. Highly recommended. Special edition for Smithsonian Institute of Washington DC.

MODELROCKETS, Estes, 33 North Main St., Chambersburg, PA 17201
Kits for making working rockets.
AVIATIONAND SPACE EDUCATION.FOL: ZGAMES FOR THECLASSROOM, Humanities Limited, Atlanta, Georgia.
Educational activities structured around aviation and space topics currently in the news.

Space Exploration

Recreational reading:
SPACE CADEI, Robert A. Heinlein, New York: Ace, 1948.
The year is 2075. New cadets are being swom in at the rocketship training school at Terra Base, Colorado. The commandant raises nis hand: "Repeat after me: 'Of my own free will without reservation........I swear to uphod the peace of the Solar System... To defend the constitution of the Solar Federation." So Matt and Tex from Terra, Oscar from Venus, Pierre from one of Jupiter's moons, and others put on their uniforms and start their training and their strange adventures in the Solar Patrol. Exciting, strange, "weird", yet as realistic and as scientific as a story projected into the future can be. This story gives us some idea of what interplanetary communication may mean.

STRANGERINASTRANGELAND, Robert A. Heinlein, New York: Berkeley, 1961. This is the story of Valentine Michael Smith, born and edurated on Mars, who arrives or, our planet as a superhuman. He shocks the morals of W'stem culture by attempting to set up a strange and fascinating discipline on Earth.

THE MARTIAN CHRONICLES, Ray Bradbury, Now York: Bantam, 1958.
This book is a diary account linking several short stories about Earth's attempts to land rockets on Mars.

IHE WHITE MOUNTAIN, John Christopher, New York: Macmillan, 1969.
In the distant future, Earthmen are ruled by an alien race that controls peoples' minds through skull caps implanted at the age of fourteen. Three boys escape before they are capped and make a perilous journey to the White Mountains, where there is a band of free men fighting aliens.

Films and media:
Jet Propulsion Laboratory: Slide and cassettes (Specific description and order form at end of Bibliography)

SPACE SHUTTLE, 40 slides with audio cassette.
STS: POST FLiGHT PRESS CONFERENCE (1982), (17 minutes) Available in 16mm and video cassette (NASA Goddard Flight Center).
Contains highlights of the 3rd flight of the Space Shuttle Columbia with narration by the crew, Jack Lousman and Gordon Fullerton, recorded at a live press conference.

Previewer's Comments:

The film moves quickly through the various aspects of the flight (launch, inflight, landing) in a simple yet interesting manner. One of the high-points of the film is a description of the effects of zero-gravity on the astronauts. An excellent stimulus for classroom discussion.

$$
200
$$

Space Colonies

51D: POST FLIGHT PRESS CONFERENCE (1985) - TIME
Available in 16mm film and video cassette (NASA Goddard Flight Center).

Readings:
OUT OF THE CRADLE: EXPLORIL THE FRONTIERS BEYOND EARTH, William Hartmann, Ron Miller, Pamela Lee, Nev: York: Workman Publishing, 1984.
Futuristic lock into new societies, space shuttles, space citi6s, Iunar industries, such as oxygen production, mining, robot pisbes.

AVIATION \& SPACE EDUCATIONFOLDER GAMES FOR THE CLASSROOM, Humanities Limited, Atlanta, GA
 Rescurces and classroom projects that can turn the classroom into a space lab.

Math and Science Extensions

POWERS OF TEN, Philip Morrison, Phylis Morrison, New Yerk: Scientific American Books, Inc., 1982.
A fascinating film in which the viewer "zooms away" from earth in steps equal to Powers of Ten. The film demonstrates the effect of increasing multiples of tens.

PUZZLES FROMOTHER WORLDS, Martin Gardner.
37 science-fiction puzzles involving logic, wordplay, palindromes, geometry, probability, magic numbers.
No. 101366 Geyer Instructional AIDS Co. Inc. P.O. Box 10060, Fort Wayne, Indiana, 46850.

PUZZLES IN SPACE, David Stonerod, Palo Atto, California: Stokes Publishing Co.,1982. Provides pattems and step-by-step guide to building models including tetrahedrons, hexahedrons, cubes and pyramids. Includes many questions asked about faces, vertices, volumes, etc.

SPACES:SOLVING PROBLEMS OF ACCËSS TO CAREERS INENGINEEHING AND SCIENCE, Dale Seymour Publications. P.O. Box 10888, Palo Alto, CA 94303 Spiral bound paper cover.

THE WHOLE COSMOS; A CATALOG OF SCIENCE ACTIVITIES, Joe Abruscato and Jack Hassard, Glenview, Illinois: Scott Foresman and Co., 1377.
Excellent resource for sciunce activities, puzzles and games, science bibliographies of various lengths - provides actual activities also stimulates ideas for related activities highly recommended, not only for this unit but for any classroom iniegrating many disciplines.

WOMAEN IN MATHEMATICS, Lynn Olsen.
No. 100660, Geyer Instructional Aids Co., Inc. P.O. Box 10060, Fort Wayne, Indiana, 46850.

COSMOS, a television series shown on public television hosted by Car Eagan and based on his discussions about aspects of our solar system. Contact your local educational television station.

The following slides and cassettes are available trom the Jet Propulsion laboiatories:

YOYAGER2 ENCOUNTERS SATURN, 40 slides with audio cassette.
YOYAGER2 ENCOUNTERS, IUPITER, 40 slides with audio cassette.
VIKING-MARS_ANDING, 40 slides with audio cassette.
YIKING MISSION TO MARS, 40 slides.
YOYAGER MISSION TOJUPITER, 40 slides.
MARINER 9 MISSION, 40 slides.
EARTH, 40 slides.
YOYAC ERMISSION TO SATURN, 40 slides.

Posters:
NASA: Ien Years of Planetay Exploration ISBN $03300000861-9$ Comparing the Planets 033000 0744-2 Intemational Cometany Explorer WAL 118/9-85

Creative Publications: Earth shapes, the earth projected on a variety of geometric solids

Museum of Science (Boston), The Solar System
Computer sftware:
MacStronomy, a program for the Macintosh involving interactive astronomy experiences.

Magazines:
Ooyssey, a munthly magazine whose subject is space, and space exploration.
1027 N. Seventh St., Milwaukee, WI 53233

FILL OUT THIS FORM WHEN ORDERING ITEMS FROM EDUCATIONAL OUTREACH AND TURN IT IN TO THE JPL CURRICULUM DEVELOPMENT CENTER OR MAIL TO:

> EDUCATION OUTREACH JET PROPULSION LABORATORY 4800 OAK GROVE DRIVE
> MAIL STOP $520-100$
> PASADENA, CA 91109

Quamity desired	Cost	Title
	$\$ 20.00$	MICROGRAVITY
	$\$ 4.00$	COMPUTERIZED SEARCH CATALOG FOR NASA WRITTEN MATERIALS ANDVHS VIDEOTAPES. (SPECIFY APPLEOR IBM) APPLE__IBM
	$\$ 4.00$	THE "GO" PROGRAM (APPLEONLY)
	$\$ 4.50$	UNDERSTANDING COMPUTERS

NAME \qquad PHONE \qquad
MAILING ADDRESS \qquad
CITY STATE \qquad ZIP \qquad
TOTAL NUMBER OF ! TEMS ORDERED \qquad
AMOUNT OF CHECK OR MONEY ORDER \$ \qquad

MUSEUM OF SCIENCE	Science Park Boston, MA	General exhibits as well as special programs in science and space are a part of the ongoing offerings of the Museum. Contact person: Matt Stein		
HAYDEN PLANETARIUM				Museum of Science
:---				
Science Park				
Boston, MA	\quad	The Museum of Science offers a		
:---				
planetary show which can be				
planned for school groups;				
free shows on Friday evenings.				
Contact person: Matt Stein				

PARENTS OF STUDENTS
IN THE SCHOOL
COMMUNTTY

PROFESSIONALS FROM COMMUNITY BUSINESSES INVOLVED IN ACTIVITIES
RELATED TO SPACE EXPLORATIONS

Parents may be invited to contribute to the class by coming in to discuss certain occupations. Specific help may be sought from architects, space scientists, engineers, draftsmen, hobby shop owners, etc. Further information might be gained through interviews conducted by students with local professionals.

Professionals doing work with space related projects may be called in to address classes and to serve on panels. Their workplaces might serve as field trip sites.

Some local companies currently involved in space related projects include:

GTE
ARTHUR D. LITTLE
RAYTHEON
HONEYWELL
DRAPER LABS MITRE

These resources apply to Greater Boston / New England area. Similar resources are available in communities around the nation.

Since some students take trips to Florida and Wahington, they should be encouraged to visit:

Kennedy Space Center in Cape Canaveral, Flonida Smithsonian Aerospace Museum, Washington D.C.

FACT BOOK Contents
Page
I. Solar System Data 3

- All You Need to Know About the Solar System for This Module 4
- Typical Student Questions 11
- Solar System: Planet Deck 13
- The Planets: Summary of Facts 14
- Distances Between Planets 17
II. Shuttle System Data 31
- All You Need to Know About the Shuttle System for This Module 32
- Typical Student Questions 38
- Components of the Shuttle System 39
- Space Shutle: From Launch to Landing 43
- Stages of Shuttle Mission 45
- Types of Missions 51
- History of Manned Space Missions 55
III. Space Colonies Data. 59
- All You Need to Know About Space Colonies for this Module 60
IV. Mathematical Facts 63
- Measurement Trivia 64
- Useful Formulae 66
- Mathematical Conversions of Measuring Units 68
- How to Round 69
- Calculating using Rounded Numerals 70

Editor's Notes

All numerical figures used in both the Solar System and Shuttle Modules are 'nominal", rather than exact ones.

The distances and sizes of our planets are always changing. Most numbers represent quantities at a specific point in time. As the time changes, so might the numbers involved.

The data for the Shuttle Module varies with each shuttle mission and its particular goals. Data presented represents a typical shuttle mission.

The data used was primarily taken from: The Solar System. Museum of Science (Boston) and NASA Publications.

ERIC Regional Math Network • Harvard Graduate School of Education • Harvard University

OUR SOLAR SYSTEM BACKGROUND INFORMATION (ALL YOU NEED TO KNOW FOR THIS MODULLE)

Our sun is a medium sized star in our galaxy which is called the Milky Way galaxy. It is thought that the Milky Way is one of a hundred billion other galaxies in our universe. There are millions of different sized stars from dwaris to red giants in the Milky Way. Because of the immense number of stars in the universe, several hundred trillion, mathematics indicates that there is a good probability of other intelligent uife in our galaxy (perhaps 15 such planets). Our sun will continue to shine and send us solar energy for another 4 billion years. At that time it is predicted that the sun will have used up all its sources of energy (hydrogen and other gases) and will no longer support life on our planet

Revolving around the sun are the nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. Each planet travels in an elliptical path and at a different speed. Atthough it is possible to calculate the mean distance from the sun to each planet, because of their different orbital speeds and paths it is very difficult to determine the distances between planets at one specific time. The mean distance is the average of all the distances from the maximum to the minimum.

At this particular period of astronomical time, however, a very peculiar event has happened. All the outer planets are virtually lined up. Because of this unusual phenomenon, it was possible for Voyager II to pass near Jupiter, Saturn, and Uranus on one trip. Voyager II began its trip in 1978 and the plan is for it to pass Pluto in 1990. Although Voyager will not pass as close to Pluto as it did to Jupiter, Saturn and Uranus, it will still gather excellent new data on Pluto.

the evolution of the universe

The Universe is the true home of humankind. Our Sun is only one star in the billions that comprise the Milky Way Galaxy, which in turn is only one of the billions of galaxies astronomers have already identified. Our beautiful planet is one of nine in our Solar System. Understanding our Universe is not just an intellectual and philo. sophical quest, but a requirement for continuing to live in, and care for, our tiny part of it, as our species expands ourward into the Solar System.

Beginnings. The Big Bang, the Universe, and Galaxies

In the 1920s scientists concluded that the Universe is expanding from its origin in an enormous explosion-che "Big Bang"- 10 to 20 billion years ago. In the future, it could either expand forever or slow down and then collapse under its own weight. Recent studies in particle physics suggest that the Universe will expand forever, but at an ever decreasing rate. For this to be true, there must be about ten times more matter in the Universe than has ever been observed; this "hidden matter" may be in the form of invisible particles that are predicted to exist by modern theory. Thus, in addition to normal galaxies there may be invisible "shadow galaxies" scattered throughout space.

The Universe contains 100 billion or more galaxies, each containing billions of stars. Our Galaxy, the Milky Way, is the home of a trillion stars, many of which resemble our Sun. Each of these stars, when it is formed from an interstellar cloud, is endowed with hydrogen and helium-simple chemical elements that formed in the Big Bang, as well as with heavier elements that formed in previous stellar furnaces. Hydrogen is consumed by a thermonuclear fire in the star's core, producing heavier chemical elem-nts that accumulate there before becoming fuel for new, higher temperature burning. In massive stars, the process continues until the element iron dominates the core. No further energy-producing nuclear reactions are then possible, so the core collapses suddenly under its own weight, producing vast amounts of energy in a stellar explosion known as a supernova. The temperature in a supernova is so high that virtually all of the chemical elements produced are flung into space, where they are available to become incorporated in laeer generations of stars. About once per century a supernova explosion occurs in each galaxy, leaving behind a compact object that may be a neutron star-as dense as an atomic nucleus and only a few miles in diamerer-or a stellar black hole, in which space-time is so curved by gravity that no light can escape.. .

A Grand Synthesis
The Universe has evolved from the Big Bang to the point we see it today, with hundreds of billions of galaxies and perhaps countless planets. There is no evidence that the p . دcesses which govern the evolution from elementary particles to galaxies to atars to hevvy elements to planets to life to intelligence differ significandy elsewhere in the Unive:se. By integrating the insights obtained from virtually every branch of scierce, from particle physics to anthropology, humanity may hope one day to ner. oach a comprehensive understanding of our position in the cosmos.

LIFE: EARTH AND THE UNIVERSE

The Evolution of Earth and Its Life Forms

Earth is the only one of our Soiar System's nine planets that we know harbors life. Why is Earth different from the other planets? Life as we know it requires tepid liquid water, and Earth alone among the bodies of the Solar System has had that throughout most of its history.

Biologists have long pursued the hypothesis that living species emerge very gradually, as subtle changes in the environment give decisive advantages to organisms undergoing genetic mutations. The recent discovery that the extinction of the dinosaurs (and many other species as well) some 65 million years ago appears to have coincided with the collision of Earth with a large object from outer space-such as a comet or asteroid-has led to new interest in "punctuated equilibrium." According to this concept, a drastic change in environment, in this case the pall cast upon Earth by the giant cloud of dust that resulted from the collision, can destroy some branches of the tree of life in a short span of tinne, and thereby open up new opportunities for organisms that were only marginally competitive before. The story of the evolution of life on Earth-once the sole province of biology-thus depends in part upon astronomical studies of comets and asteroids which may collide with our planet, the physics of high-velocity impact, and the complex processes that govern the movement of dust in Earth's atmosphere.

Atmospheric scientists are finding that within such short times as decades or centuries the character of life on Earth may depend upon materials originating in the interior of the planet (including dust and gases from volcanoes), chemical changes in the oceans and the atmosphere (including the increase in carbon dioxide due to agricultural and industrial activity), and specific radiations reaching us from the Sun (such as the ultraviolet rays which affect the chemical composition of Earth's atmosphere). Through mechanisms still not understood, changes in Ee h's climute may in turn depend upon the evolution of life. It has become apparent that life on Earth exists in a complex and delicate balance not only with its own diverse elements, but with Earth itself, the Sun, and probably even comets and asteroids. Interactions among climatology, geophysics, geochemistry, ecology, astronomy, and solar physics are all important as we contemplate the future of our species; space techniques are playing an increasing role in these sciences.

Space techniques are also valuable for studying Earth's geology. The concept of continental drift, according to which the continents change their relative positions as the dense rocks on which they rest slowly creep, is proving to be a key theory in unraveling the history of Earth as recorded in the layers of sediments laid down over millions of years.

The Possibility of Other Life in the Universe

Are we alone in the Universe? Virtually all stars are composed of the same chemical elements, and our current understanding of the process by which the Solar System formed suggests that all Sun-like stars are likely locales for planets. The search for life begins in our own Solar System, but based on the information we have gleaned from robotic excursions to Mercury, Venus, the Moon, Mars, Jupiter, Saturn, and Uranus, it now appears that Mars, and perhaps Titan, a moon of Saturn, are the most likely candidates for the existence of rudimentary life forms now or in the past.

The existence of water on Mars in small quantities of surface ice and in atmospheric water vapor, and perhaps in larger quantities frozen beneath the surface, leaves open the possibility that conditions on Mars may once have been favorable enough to support life in some areas. Samples returned from regions where floods have occurred may provide new clues to the question of life on Mars.

Titan has a thick atmosphere of nitrogen, along with methane and traces of hydrogen cyanide-one of the building blocks of biological molecules. Unfortunately, the oxygen atoms needed for other biological molecules are missing, apparently locked forever in the ice on Titan's surface.

How do we search for planets beyond our Solar System? The 1983 Infrared Astronomy Satellite discovered that dozens of stars have clouds of particles surrounding them emitting infrared radiation; astrophysicists believe that such clouds represent an early stage in the formation of planets. Another technique is to track the position of a star over a number of years. Although planets are much less massive than stars, they nevertheless exert a significant gravitational force upon them, causing them to wobble slightly. Through a principle called interferometry, which combines the outputs of two telescopes at some distance apart to yield very sharp images, it should be possible to derect planets-if they exist-by the perturbations they cause as they orbit nearby stars similar to our Sun. With sufficiently large arrays of telescopes in space we might obtain images of planets beyond the Solar System. By searching for evidence of water and atmospheric gases we might even detect the existence of life on those planets.

If life originated by the evolution of large molecules in the oceans of newlyformed planets, then other planets scattered throughout our Galaxy could be inhabited by living species, some of which may possess intelligence.

If intelligent life does exist beyond our Solar System, we might detect its messages. The Search for Extraterrestrial Intelligence, or SETI, is a rapidly advancing field. For several decades it has been technically possible to detect radio signals (if any) directed at Earth by alien civilizations on planets orbiting nearby stars. It is now possible to detect such signals from anywhere in our Galaxy, opening up the study of over 100 billion candidate stars. Such a detection, if it ever occurs, would have profound implications not only for physical and biological sciences, but also for anthropology, political science, philosophy, and religion. Are we alone? We still do not know.

EXPLORATION OF THE OUTER PLANETS

Beyond the asteroid belt lie four giant ringed planets (Jupiter, Saturn, Uranus, and Neptune), the curiously small world Pluto, more than 40 moons (two of whichTitan and Ganymede-are larger than the planet Mercury), and two planetary magnetospheres larger than the Sun itself. The center of gravity of our planetary s:stem is here, since these worlds (chiefly Jupiter and Saturn) account for more than X_{3} persent of the mass in the Soler System outside of the Sun itself. The outer planets, especially Jupiter, can provide unique insights into the formation of the Solar Sviion and the Universe. Because of their large masses, powerful giev vitational fields, and low temperatures, these giant planets have retained the hydrogen and helium they collected from the primordial solar nebula.

The giant worlds of the outer Solar System differ greatly from the smaller terrestrial planets, so it is not surprising that different strategies have been developed to study them. The long-term exploration goal for terrestrial planets and small bodies is the return of samples to laboratories on Earth, but the basic technique for studying the giant planets is the direct analysis of their atmospheres and oceans by means of probes.

Atmospheric measurements, which will be undertaken for the first time by Galileo at Jupiter, provide the only compositional information that can be obtained from a body whose solid surface (if any) lies inaccessible under tens of thousands of miles of dense atmosphere. Atmospheric probe measurements, like measurements on returned samples, will provide critical information about cosmology and planetary evolution, and will permit fundamental distinctions to be made among the outer planets themselves.

The outer Solar System provides us with a special challenge, one that can be described as an embarrassment of scientific riches. It presents an overwhelming number of potential targets beyond the planets: The larger moons (Titan and Triton), the smaller moons (including the diverse Galiean satellites), the rings, and the magnetcspheres.

Exciting possible missions include: (1) Deep atmospheric probes (to 500 bars) to reach the lower levels of the atmospheres of Jupiter and Saturn and measure the composition of these planets; (2) hard and soft landers for various moons, which could emplace a variety of seismic, heat-flow, and uther instruments; (3) close-up equipment in low orbits; (4) detailed studies of Titan, carried out by balloons or surface landers; (5) on-site, long-term observations of Saturn's rings by a su-called "ring rover" spacecraft able to move within the ring system; and (6) a high-pressure oceanographic probe to image and study the newly-discovered Uranian Ocean.

The Possibility of Life in the Universe A Fictional Excerpt

"On the third day a pair of Drake's students from Comell explained to laymen in the group the frightening equation for the probability of life in some other planet in the Galaxy:

$$
N=N \times f_{1} \times f_{2} \times f_{3} \times f_{4} \times f_{5} \times f_{6}
$$

Wren it was placed on the blackboard the non-scientific members groaned, but the speaker quickly explained...

All it means is that the first N represents the number of civilizations in our Galaxy capable of communicating with ue right now. That's the figure we must have to make our discussion reasonable. The second N is a figure we setk to make our discussion practical. N is a very large number represerting all the known stars in the galaxy. Some experts say one hundred billion, some say four. In our example, l'll take four. The next six letters with their subscripts represent fractions, with each subscript standing for a crucial word or concept. When you multiply the very large number by the six fractions, you get a constantly diminishing number of possible civilizations.

First fraction: The portion of stars which have planetary systems... this fraction must be consicuerably smaller than one-half, more likely one quarter.
Second fraction: The pc: \quad ion of planets with an ecology to support life; perhaps one half.
Third fraction:
The portion of the eligible planets on which life actually does develop; the biologists believe it must almost be nine tenths.
Fourth fractic What portion of those with life devalop intelligent forms? Given enough time we think it could be one tenth.
Fitth fraction: The portion of civilizations with intelligent life which leam to communicate outwardly; perhaps one third.
Sixth fraction: What is the longevity of technical civilization? The only hard evidence we have is our own experience on earth. Four and a hali billion years old. Technically competent to communicate forty-five years....

$$
\frac{45}{4,500,000,000} \text { or } \frac{1}{100,000,000}
$$

Multiplying the fractions:
This means there are at least 15 galaxies with whom we migh* nmunicate."*
*Editor's Note:

$$
\begin{aligned}
& N=N \times f_{1} \times f_{2} \times f_{3} \times f_{4} \times f_{5} \times f_{6} \\
& N=4 \times 10^{11} \times \frac{1}{4} \times \frac{1}{2} \times \frac{9}{10} \times \frac{1}{10} \times \frac{1}{3} \times \frac{45}{4,500,000,000} \\
& N=4 \times 10^{11} \times \frac{1}{4} \times \frac{1}{2} \times \frac{9}{10} \times \frac{1}{10} \times \frac{1}{3} \times \frac{1}{10^{8}} \\
& N=\frac{4}{4} \times \frac{1}{2} \times \frac{1}{3} \times \frac{9}{10^{2}} \times 10^{11} \times \frac{1}{10^{8}} \\
& N=\frac{3}{2} \times 10^{1}=15
\end{aligned}
$$

From: Space by James Mitchener.
Fact Book

Typical Student Questions and
 Discussion

THE SOLAR SYSTEM

Is there any air in space ?
No. There is no atmosphere as we know it. There do exist gases (hydrogen, helium, etc.) and radiation, but there is literally nothing in space. It is a void, a near perfect vacuum.

Is it hot in space? Is it cold ?

It depends where you are. If you are in the sunlight, with direct exposure to the sun (i.e., with no space suit), then your skin would reach over 200 degrees F on the surface. If you were in the shade (i.e. behind a planet), your skin would experience -200 degrees F. So it is both hot and cold in space.

Is there any sound in space ?

No. Since there is no atmosphere for the sound waves to travel through, there is no sound in space.

What would happen if you opened a can of COKE in space?

If the COKE was shaken up, it would still spray when it was opened. However the spray would not fall to the ground as it does here on Earth; it would continue floating away from the can. Any particle given a motion wi!l continue in motion until it is acted upon by another force. In space there is no friction to act upon the spray.

If you were floating in space, could you lift a very heavy object like an elephant?

Yes. A "weightless" environment means that objects have no weight. Therefore you could pick up any object. However an object's mass is stili' important. Because the elephant is more massive than you are, it would be difficult to control the elephant as you lifted it, but you would still be able to it (in fact, you could lift it on your finger tip).

What would happen if you threw the elephant to somebody?

The elephant will contirue in motion until it is acted upon by some force. If you attempted to catch the elephant, the inertia of the elephant's motion would carry you right along with it. You would not be able to stop it hecause the elephant is more massive than you are.

If you threw a ball in space, what would happen to it?

What would happen to you?
Again, the ball would continue in motion indefinitely until it hit something. The act of throwing the ball would cause you to move in the opposite direction and you would continue in motion until you hit something.

Do they have radio stations in space ?

Yes. Radio waves do not need a medium like air to travel through. In fact, scientists are using radio waves to investigate the possibility of life elsewhere in the universe.

Could you live on the moon?
Yes. However, the moon has no atmosphere so you would always need to wear a space suit or be in an enclosed building like a moon base.

Do you think there is life beyond our planet?

Just remember that our solar system is only one of millions in the Milky Way Galaxy and there are 10 billion Galaxies in the Universe.

Average Orbital
Speed (MPH)

Equatorial Diameter (Miles)

Mass(Tons)

Escape Velocity (MPH)
Temperatuie Max ${ }^{\circ}$:
$\operatorname{Min}{ }^{\circ} \mathrm{F}$
\# Moons
Eccentricity of Orbit
Summary of Facts for Pianets, Moon \& Sun

MERC.	VENUS	EARTH	MOON	MARS	JUPITER	SATURN	ÚRANUS	NEPTUNE	PLUTO	SUN
8 8 0 8 0 0	O 0 N N N	O O O N		$\begin{aligned} & 8 \\ & 0 \\ & 10 \\ & \stackrel{0}{n} \\ & \dot{N} \end{aligned}$	\circ 8 0 0 0 0 0 0	\circ 0 - 0 0 0 ∞	\circ 0 0		\circ 0 0	25 million to nearest star
$\begin{aligned} & 88.0 \\ & \text { days } \end{aligned}$	$\begin{aligned} & 224.7 \\ & \text { days } \end{aligned}$	$\begin{gathered} 365.26 \\ \text { days } \end{gathered}$	$\begin{aligned} & 27.32 \\ & \text { days } \end{aligned}$	$\begin{aligned} & 1.88 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 11.86 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 29.46 \\ & \text { Years } \end{aligned}$	84.01 Years	$\begin{aligned} & 164.8 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 247.7 \\ & \text { Years } \end{aligned}$	246 million 3 next yalaxy
$\begin{gathered} 58 \\ \text { days } \end{gathered}$	$\begin{aligned} & 243 \\ & \text { days } \end{aligned}$	$\begin{gathered} 24 \\ \text { hours } \end{gathered}$	$\begin{gathered} 27 \\ \text { days } \end{gathered}$	$\begin{gathered} 24 \\ \text { hours } \end{gathered}$	$\begin{gathered} 9 \\ \text { hours } \end{gathered}$	$\begin{gathered} 10 \\ \text { hours } \end{gathered}$	$\begin{gathered} 15 \\ \text { hours } \end{gathered}$	$\begin{gathered} 18 \\ \text { hours } \end{gathered}$	$\begin{gathered} 6 \\ \text { days } \end{gathered}$	$\begin{gathered} 25 \\ \text { days } \end{gathered}$
107,300	78,500	66,500	2,300	54,100	29,300	21,600	15,300	12,200	10,600	$\begin{gathered} 560,000 \\ \text { around } \\ \text { galactic center } \end{gathered}$
3031	7521	7927	2160	4197	88,733	74,600	31,600	30,200	2,113	865,000
3.53×10^{20}	5.34×10^{21}	6.59×10^{21}	8.24×10^{19}	7.08×10^{20}	2.09×10^{24}	6.26×10^{23}	9.55×10^{22}	1.15×10^{23}	1.12×10^{19}	2.19×10^{27}
9,619	23,042	25,055	5,324	11,185	141,828	88,139	48,096	54,136	751	1,378,000
$\begin{array}{r} 660 \\ -270 \end{array}$	$\begin{aligned} & 896 \\ & -27 \end{aligned}$	$\begin{array}{r} 136.4 \\ -126.9 \end{array}$	225 -243	$\begin{gathered} 80 \\ -190 \end{gathered}$	$\begin{gathered} 53,500 \\ -140 \end{gathered}$	- ${ }_{\text {* }}$	*	-364	$\begin{aligned} & -382 \\ & -390 \end{aligned}$	$\begin{gathered} 27,000,000 \\ 10,800 \end{gathered}$
0	0	1	-	2	16+rings	23?+rings	5+rings	2	1	9 planets
0.206	0.007	0.017	0.055	0.093	0.048	0.056	0.047	0.009	0.250	-

* Scientists do not yet know.

Regional Math Ne'work • Harvard Graduate School of Education • Harvard University

Summary of Facts for Planets, Moon \& Sun

Scaled Dimension	MERC.	VENUS	EARTH	MOON	MARS	JUPITER	SATURN	URANUS	NEPTUNE	PLUTO	SUN
Equatorial Diameter	. 382	. 949	1	. 2725	. 5326	11.19	9.41	3.98	3.81	0.24 ?	109
Mass	. 055	. 815	1	. 012	. 107	317.9	95.17	14.56	17.24	.002?	332,946
Volume	. 056	. 855	1	. 020	. 151	1,403	833	63.0	55.3	. 013 ?	1,300,000
Surace Gravity	. 38	. 90	1	. 16	. 38	2.6	1.2	. 93	1.4	0.03?	27.8

APPROXIMATE DISTANCES BETWEEN PLANETS

Planets travel in their orbits at different speeds. Thus, the distance between them is constantly changing.
A synodic period is that time when the planets are "lined up" coming straight out from the sun. It is during these synodic periods that the planets are closest together.

Distances

	Dist. to Sun	Dist. to Mercury	Dist. to Venus	Dist. to Earth	Dist. to Mars	Dist. to Jupiter	Dist. to Saturn	Dist. to Uranus	Dist. to Neptune	Dist. to Pluto
Mercury	35,980,103	0	31,260,012	56,983,012	105,662,248	447,645,000	854,632,901	1,746,039,900	2,758,463,907	3,618,429,988
Venus	67,240,115	31,260,012	0	25,723,000	74,402,236	416,384,988	823,372,889	1,714,779,888	2,727,203,895	3,587,169,976
E*ith	92,963,115	56,983,012	25,723,000	0	48,679,236	390,661,988	797,649,889	1,689,056,888	2,701,480,895	3,561,446,976
Mars	141,642,351	105,662,248	74,402,236	48,679,236	0	341,982,752	748,970,653	1,640,377,652	2,652,801,659	3,512,767,740
Jupiter	483,625, 103	447,645,000	416,384,988	390,661,988	341,982,752	0	406,987,901	1,298,394,900	2,310,818,907	3,170,784.988
Satum	890,613,004	854,632,901	823,372,889	797,649,889	748,970,653	406,987,901	0	891,406,999	1,903,831,006	2,763,797,087
Uranus	1,782,020,003	1,746,039,900	1,714,779,889	1,689,056,888	1,640,377,652	1,298,394,900	891,406,999	0	1,012,424,007	1,872,390,088
Neptune	2,794,444,010	2,758,463,907	2,727,203,895	2,701,480,895	2,652,801,659	2,301,818,907	1,903,831,006	1,012,424,007	0	859,966,081
Pluto	3,654,410,091	3,618,429,988	3,587,169,976	3,561,446,976	3,512,767,740	3,170,784,988	2,763,797,087	1,872,390,088	859,966,081	0

"The Oddity of the Solar System"

Pluto is the oddity of the solar system, because it has little in common with the other gas giants. Pluto travels in an oval shaped orbit that is tilted from the plane of the other planets' orbits.

Pluto may not always have been a planet. It previously may have been a moon of Neptune.

Distance from the sun:
Average Diameter:
$3,674,000,000$ miles
2,113 miles

Named after a Greek god who ruled the land of the dead.

MAJOR FEATURES OF PLUTO:

- Length of "day": 6 Earth Days
(Time to make complete rotation around its axis)
- Length of "year": 247.7 Earth Years
(Time to make one orbit around sun)
- Mass: 1.12×10^{19} Tons
- Average Orbital Speed: 10,600 MPH
- Surface Gravity: $0.03 \times$ Earth's Gravity
- Escape Velocity: 751 MPH
- Number of Moons: 1
- Number of Rings: 0
- Exploration History: None to date.

SUN

"The Kingpin of Our Solar System"

The sun is the star that is the closest to earth. It is a huge ball of gas and is the source of our heat, light, wind, and rain.

Explosions are happening on the sun all the time, giving off a tremendous amount of heat and light. The sun spins on its own axis. It also travels around the center of its family of stars, the Milky Way Galaxy. Scientists estimate it will take 246 million "Earth" years to complete this trip.
Distance to the Next Galaxy: Average Diameter:
246,000,000 miles
Av 865,000 miles

MAJOR FEATURES OF THE SUN:

- Length of "day": 25 Earth Days
(Time to make complete rotation around its axis)
- Length of "year": 246 Million Earth Years
(Time to make one orbit around its family of stars)
- Mass: 2.19×10^{27} Tons
- Average Orbital Speed: 560,000 MPH around gallactic center
- Escape Velocity: 1,378,000 MPH
- Number of Planets: 9

MOON

"Our Closest Neighbor"

The moon is a big rock that is a satellite of earth. A satellite travels around an obiect in an orbit or path.

The moon has extremes of temperature ranging from $-243^{\circ} \mathrm{F}$ to $225^{\circ} \mathrm{F}$. The Moon has no air or water and therefore has no wind or sound or rain.

Only 59% of the moon is visible from the earth.
Distance from the earth: $\quad 238,900$ miles Average Diameter: 2,160 miles

MAJUR FEATURES OF THE MOON:

- Length of "day": 27 Earth Days (Time to make corplete rotation around its axis)
- Length of "year": 27.32 Earth Days (Tims to make one orbit around the earth)
- Mass: 8.24×10^{19} Tons
- Average Orbital Speed: 2300 MPH
- Surface gravity: $0.16 \times$ Earth
- Escape Velocity: 5,324 MPH
- Exploration History: Apollo Program 1®a9-1972 Moon Exploration and Landing. Moon studied by Ranger, Surveyor and Lunar Orbite:.

MERCURY

"The Hidden Planet"

Mercury is a small, fast moving planet. It is so close to the sun that it is usually lost in the sun's glare. It is visible to earth just after sunset or just before dawn. Even then it is obscured by haze and dust in the earth's atmosphere.

Since Mercury is small, its gravitational pull is not very strong. It is not even strong enough to hold the planet's atmosphere. Without an atmosphere, there is nothing above the surface of Mercury to reflect its own light. That's why Mercury is so dark.

Distance from the sun: Average Diameter:

Named for the speedy messenger of the Roman gods.
$36,000,000$ miles
3,031 miles

MAJOR FEATURES OF MERCURY:

- Length of "day": 58 Earth Days
(Time to make complete rotation around its axis)
- Length of "year": 88 Earth Days
(Time to make one orbit around sun):
- Mass: 3.53×10^{20} Tons
- Orbital Speed: 107,300 MPH
- Surface Gravity: $0.38 \times$ Earth's Gravity
- Escape Velocity: 9,619 MPH
- Number of Moons: 0
- Number of Rings: 0
- Exploration History: Mariner 10 Fly-by

March 1974
September 1974

231

EARTH

"Our H.me Base"

Earth is a big, nearly round ball of stone and metal, covered with water, rocks and dirt. Day and night are caused by the spinning of the earth on its axis, exposing different regions to rays of the sun.

Earth's atmosphere, made up of nitrogen (78\%), oxygen (21%) as well as helium, carbon dioxide, and argon, does not go on forever. It becomes thinner and thinner as you travel away from earth, until at a point about two hundred miles up, where the atmosphere fades and outer space begins.

Distance from the sun: $\quad 92,900,000$ miles Average Diameter:

7,927 miles

MAJOR FEATURES OF EARTH:

- Length of "day": 24 Earth Hours
(Time to make complete rotation around its axis)
- Length of "year": 365.26 Earth Days
(Time to make one orbit around sun)
- Mass: 6.59×10^{21} Tons
- Average Orbital Speed: 66,500 MPH
- Surface Gravity: 32 feet/sec/sec
- Average Escape Velocity: 25,055 MPH
- Number of Moons: 1
- Number of Rings: 0
- Exploration History:

Explorer 1 discovered intense radiation zone, called Van Allen Radiation Region.
Various satellites have helped understand features of earth, its weather patterns and its resources.

SATURN

"The Planet of Exquisite Rings"

No planet in the solar system is adorned with rings as brilliant as Saturn's. Each of Saturn's rings is made of tiny particles of orbiting ice and rock. S.ientists believe the rings were formed either from a moon or passing body which ventured too close and was tom apart.

Saturn is composed mostly of hydrogen, and has a subtle butterscotch color.
$\begin{array}{lr}\text { Distance from the sun: } \quad 886,000,000 \text { miles } \\ \text { Average Diameter: } & 74,600 \text { miles }\end{array}$
Named for the Roman god of Agriculture.

.JOR FEATURES OF SATURN:

- Length of "day": 10 Earth Hours (Time to make complete rotation around its axis)
- Length of "year": 29.46 Earth Years (Time to make one orbit around sun)
- Mass: 6.26×10^{23} Tons
- Average Orbital Speed: 21,600 MPH
- Surface Gravity: $1.2 \times$ Earth's Gravity
- Escape Velocity: 88,139 MPH
- Number of Moons: 23
- Number of Rings: 1000+
- Exploration History: Pioneer 111979

Voyager 11980
Voyager 21981

Saturn Fly-by
Saturn \& Jupiter Fly-by
Tour of Planets

JUPITER

"The Giant of the Solar System"

Jupiter is the largest of the solar system's planets. It is something of a minisolar system, with 16 known moons above its clouds.

Jupiter is filled with poisonous gas and has no solid surface. Only towards its center does the gas become liquid and then solid.

Jupiter is known for its "Giant Red Spot" that covers an area more than three times the size of earth. The red spot is a storm that has been raging for j'ears.

Distance from the sun:
Average Diameter:
Named for the king of Roman gods, because it is the largest planet.

483,500,000 miles
88,733 miles

MAJOR FEATURES OF JUPITER:

- Length of "day": 9 Earth Hours
(Time to make complete rotation around its axis)
- Length of "year": 11.86 Earth Years
(Time to make one orbit around sun)
- Mass: 2.09×10^{24} Tons
- Average Orbital Speed: 29,300 MPH
- Surface gravity: $2.6 \times$ Earth's Gravity
- Escape Velocity: 141,828 MPH
- Number of Moons:: 16
- Number of Rings: 1
- Exploration History: Pioneer 101973 Fly-by

Pioneer 111974
Voyager 11979 Tour of Jupiter
Voyager 21979 Survey of Jupiter
Galileo Project being readied for 1980's

MARS

"The Red Planet"

Mars is covered with dust and rocks containing a reddish mineral. That's why Mars looks red and is often called the Red Planet. Mars has long been considered the solar system's prime candidate for harboring extraterrestrial life. Mars turns on its axis,which results in different seasons. Seasons would be conducive to supporting the growth of vegetation.

Astronomers, looking at Mars, saw what appeared to be straight lines crisscrossing the surface, leading to the notion that intelligent beings built canals on the planet. The lines tumed out to be an illusion.

Distance from the sun: Average Diameter:

141,515,000 miles 4,197 miles

Named for the god of war, a warrior covered with'blood.

MAJOR FEATUHAES OF MARS:

- Length of "day": 24 Earth Hours
(Time to make complete rotation around its axis)
- Length of "year": 1.88 Earth Years
(Time to make one orbit around sun)
- Mass: 7.08×10^{20} Tons
- Average Orbital Speed: 54,100 MPH
- Surface Gravity: $0.38 \times$ Earth's Gravity
- Escape Velocity: 11,185 MPH
- Number of Moons: 2
- Number of Rings: 0
- Exploration History: Mariner 41965 Fly-by

Mariner 61969 Fly-by

Mariner 71969 Fly-by
Mariner 91971 Orbit of Mars
Viking 11976 Orbit of Mars
Viking 21979 Unmanned landing

VENUS

"The Brightest Planet"

Venus is sometimes called earth's sister planet. Venus is the closest to the earth and of a similar size. In their orbits, Earth and Venus get as close as 25 million miles and as far apart as 160 million miles. Venus has been called both the morning and evening star, because it can be seen just before morning when it is travelling away from earth and just before evening when it is coming toward earth.

Venus is surrounded by thick clouds filled with drops of acid. The clouds hold in the heat and make Venus very hot.

Distance from the sun:
Average Diameter:

67,200,000 miles
7,521 miles

Named for the Roman god

 of Springtime and Flowers.
MAJOR FEATURES OF VENUS:

- Length of "day": 243 Earth Days
(Time to make complete rotation around its axis)
- Length of "year": 224.7 Earth Days
(Time to make one orbit around sun)
- Mass: 5.34×10^{21} Tons
- Average Orbital Speed: 78,500 MPH
- Surface gravity: $0.90 \times$ Earth's Gravity
- Escape Velocity: 23,042 MPH
- Exploration History:

1962 Mariner 2 Fly-by
1967 Mariner 5 Fly-by 19\%4 Mariner 10 Fly-by

1978 Pioneer Venus 1
First spacecraft to orbit Venus
1978 Piniear Venus 2
Probes placed on Venus

- Interesting Notes:
- Evidence of Volcanic Activity
- About 97% of atmosphere is carbon dioxide
- Appears to have two continent-like areas, one the size of Africa, the other half the size of Australia.

URANUS

"The Goal of Voyager"

Uranus is much bigger than earth, butit is so far away that it is at the limit of naked eye vision. Its atmosphere contains methane which gives the planet its greenish color.

Clouds sweep across the face of the plariet at a faster rate than on earth. They have been clocked to be traveling more than 220 mph .

Distance from the sun:
Average Diameter:

1,782,000,000 miles
31,600 miles

Named for the Greek god of the sky.

MAJOR FEATURES OF URANUS:

- Length of "day": 15 Earth Hours
(Time to make complete rotation around its axis)
- Length of "year": 84.01 Earth Years
(Time to make one orbit around sun)
- Mass: 9.55×10^{222} Tons
- Average Orbit:l Speed: 15,300 MPH
- Surface Gravity: $0.93 \times$ Earth's Gravity
- Escape Velocity: 48,096 MPH
- Number of Moons: 5
- Number of Rings: 5
- Exploration Hlistory: 1986 Voyager 2 Fly-by

NEPTUNE

"The Logically Discovered Planet"

Scientists knew there was a Neptune even before they saw it. As they watched Uranus, they noticed something was affecting its orbit. They believed there was another planet beyond Uranus. They finally found it in 1846.

Neptune's atmosphere is like that of Uranus, containing methane, along with hydrogen and helium. It, too, looks blue-ish green.

Distance from the sun: Average Diameter:

2,794,000,000 miles
30,200 miles
Named for the Roman god of the Sea.

MAJOR FEATURES OF NEPTUNE:

- Length of "day": 18 Earth Hours
(Time to make complete rotation around its axis)
- Length of "year": 164.8 Earth Years
(Time to make one orbit around sun)
- Mass: 1.15×10^{23} Tons
- Average Orbital Speed: 12,220 MPH
- Surface Gravity: $1.4 \times$ Earth's Gravity
- Escape Velocity: 54,136 MPH
- Number of Moons: 2
- Number of Rings: 0
- Exploration History:

Scheduled to be visited by Voyager 2 in 1989

SHUTTLE BACKGROUND INFORMATION

(ALL YOU NEED TO KNOW FOR THIS MODULE)

From the beginning of time, man has longed to know more about space. The ancient Chinese first developed rocketry. Using the principle of Newton's Third Law (for every action there is an equal and opposite reaction), the Chinese invented a gunpowder rocket. Much like releasing an inflated balloon, gas from a controlled explosion bursts out of the tail toward the ground, propelling the rocket in the opposite direction into the air. It becam? clear to early space scientists that by aiming a large enough rocket skyward, and propelling it with enough force, one would be able to send a spacecraft into space.

How large an explosion is necessary to lift a rocket? The space craft must travel fast enough to escape from the earth's powerful gravitational pull. Through mathematical calculations, it was determined that an obiect travelling at 22,055 miles/hour will escape the earth's gravity.

The United States has developed spacecraft and planned missions to coritinue this quest to fly in space. Our space program has included the Mercury Program (the earliest flights), the Gemini program (long flights around the eartii i), und the Apollo Program (flights to the moon). Early space exploration consisted of sending small payloads into space so that the rockets and fuels were relatively simple to develop. The Atlas rocket was the first rocket used. As the sizes of the payloads and the distances people hoped to travel increased, the sizes and the costs of rockets also escalated. By the time we were sending three astronauts 238,900 miles to the moon in a Saturn rocket, costs had increaser' to 2 billion dollars for each trip.

A major problem of the Apollo missions was that the expensive Saturn rockets used for each launch were totally destroyed during the mission. It was
decided that a partially reusable spaceship was needed to reduce some of the costs. In addition, NASA started into the commercial business of delivering, repairing, and retrieving satellites and running experiments for contractors in the weightlessness of space (For further information, see the Fact Book, types of missions.)

The spaceship designed for the purposes of reducing and controlling costs was the space shuttle, with its re-usable features. The Shuttle System consists of the shuttle itself, two solid rocket boosters and an external tank that carries fuel for the rocket engines. The basic components of the shuttle are the Orbiter, which includes the flight deck, the mid-deck and crew quarters and the payload bay, which is like the trunk of a car. The payload bay is where satellites, the robot arm, and sometimes the European Space Agency (ESA) lab (extra space for carrying out experiments) are carried into orbit.

The shuttle takes off into space as a regular rocket would, with a huge thrust given by the two large solid rocket boosters on each side and by the large rear engines. The engines are fed with fuel from a massive external tank upon which the Orbiter sits. When in space, the Orbiter, which has discarded its solid rocket boosters, acts like any other rocket in space, held in orbit by maintaining a speed to counter the force of gravity. There is no atmosphere where the Orbiter flies, so there is no friction. This means the wings do not serve their traditional purpose, since there is nothing to "push against." Furthermore, once the Orbiter is inserted into orbit by its rockets, it will continue to travel at 17,500 miles per hour for a long time without the necessity of using additional power.

When it is time for the Orbiter to return to earth, it slows down by turning itself backwards and gravity begins to pull it earthwards at a 25 degree angle. The Orbiter glides to the earth and lands like an ziplane on a large runway. By the time it lands, the Orbiter has slowed to as, $-e d$ of 200 miles/hour. The Orbiter or shuttle slows down as it begins to land because the landing
approach follows a large S curve, much like the path taken down a steep mountain by a skier. Furthermore, upon entering the atmosphere, the Orbiter encounters air molecules which cause great friction, which, in turn, slows the speed.

One of the most difficult engineering problems encountered during the design of the Orbiter was to protect it from the tremendous heat generated by friction as it reentered the atmosphere. To help visualize the impact of entering the atmosphere, think of the Orbiter passing through a sheet of paper. The parts that hit the paper first need the greatest protection. Special heat resistant surfaces were developed for these surfaces. The leading edges of the wings and nose of the craft are covered with an extraordinary material called "carbon-carbon." The bottom and edges of the tail fins are covered with black tiles, somewhat less heat resistant than the carbon-carbon materiai. The remainder of the orbiter has white tiles. These are even less heat resistant but still very effective in protecting the areas to which they are attached.

Once the shuttle nas landed, it is transported back to the Kennedy Space Center in Florida, piggy-back, aboard a specially designed 747 so that it can be re-outfitted for its next mission. The large external fuel tank is destroyed during the launch, but the solid rocket boosters parachute to the earth and are recovered from the ocean so that they may be used again for up to 20 launches. The solid rocket boosters are made in many sections which are fitted together at the Kennedy Space Center like a giant puzzle. These sections are sealed together by rubber gaskets called O-rings. Each Orbiter is expected to be re-used up to 100 times. Since it is designed only to achieve earth orbit, the current space shuttle could never make a trip to the moon or other planets. However, the shuttle will contribute to future planetary exploration by serving as a prototype for more advanced vehicles or by bringing ast onauts to space stations, from which they will embark to other planets.

242

Fact Book

34

CRAVITATION AND BIOLOGY

As humans move out to settle space, the consequences of long-term exposure to less than Earth's gravity must be fully understood. In our deliberations, the Commission has found a sericus lack of data regarding the effects on the health of humans living for long periods of time in low-gravity envirot.ments.

NASA's experience suggests that the "space sickness" syndrome that afflici. .; many as half the astronauts and cosmonauts is fortunately self-limiting. Of continuous concern to medical specialists, however, are the problems of cardiovascular deconditioning after months of exposure to microgravity, the demineralization of the skeleton, the loss of muscle mass and red blood cells, and impairment of the immune response.

Space shuttle crews now routinely enter space for periods of seven to nine days and return with no recognized long-term health problems, but these short-term flights do not permit sufficiently detailed investigations of the potentially serious problems. For example, U.S. medical authorities report that Soviet cosmonauts who returned to Earth in 1984 after 237 days in space emerged from the flight with symptoms that mimicked severe cerebellar disease, or cerebellar atrophy. The cerebellum is the part of the brain that coordinates and smooths out muscle movement, and helps create the proper muscle force for the movement intended. These pioneering cosmonauts apparently required 45 days of Earth gravity before muscle coordination allowed them to remaster simple children's games, such as playing catch, or tossing a ring at a vertical peg.

As little as we know about human adaptation to microgravity, we have even less empirical knowledge of the long-term effects of the one-sixth gravity of the Moon, or the one-third gravity of Mars. We need a vigorous biomedical research program, geared to understanding the problems associated with long-term human spaceflight. Our recommended Variable-g Research Facility in Earth orbit will help the Nation accumulate the needed data to support protracted space voyages by humaikind and life on worlds with different gravitational forces. We can also expect valuable new medical information useful for Earth-bound patients from this research.

OUTER SPACE AGREEMENTS

Five U.N. treaties are currently in force regarding activities in space: the 'Ireaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and other Celestia, Rodies (1967); the Agreement on the Rescue of Astronauts, the Return of Astronauts, and the Return of Objects Launched into Outer Space (1968); the Convention on International Liability for Damage Csused by Space Objects (1972); the Convention on Registration of Objects Launched inio Outer Space (1976); and the Treaty on Principles Governing Activities on the Moon and Other Celestia! Bodies (1979). The major space nations, including the United States and Soviet Union, have ratified all but the last, which is more commonly referred to as the "Moon Treaty." Only five countries have signed and ratified that agreement.

In addition to deliberations at the United Nations, there is an organization called the In:ernational Institute of Space Law, which is part of the International Astronautical Federation that provides a forum for discussing space law at its annual meetings.

INTERNATIONAL SPACE YEAR

A specific opportunity for global spare cooperation will occur in 1992. Called the International Space Year (ISY), it will take advantage of a confluence of anniversaries in 1992: the 500th anniversary of the discovery of America, the 75th anriversary of the founding of the Union of Soviet Socialist Republics, and the 35 th anniversaries of the International Geophysical Year and the launch of the first artificial satellite, Sputnik 1. During this period, it is also expected that the International Geosphere/ Biosphere Program will be in progress, setting the stage for other related space activ:ties.

In 1985, Congress approved the ISY concept in a bill that authorizes funding for NASA. The legislation calls on the President to endorse the ISY and consider the possibility : discussing it with other foreign leaders, including the Soviet Union. It directs NASA to work with the State Department and other Government agencies to initiate interagency and international discussions exploring opportunities for international missions and related research and educational activities.

As stated by Senator Spark Matsunaga on the tenth anniversary of the historic Apollo-Sojuz Test Project, July 17, 1985, "An International Space Year won't change the world. But at the minimum, these activities help remind all peoples of their common humonity and their shared destiny aboard this beautiful spaceship we call Earth."

PROTECTING THE SPACE ENVIRONMENT FROM DEBRIS

What goes up must come down-even in Earth orbit! The difference in space is that it can take millions of years for objects to be pulled back to Earth by friction with Earth's atmosphere, depending on how close they are to Earth. An object 100 miles above Earth will return in a matter of days, while objects in geostationary orbit will take millions of years to reenter.

Since the dawn of the Space Age, thousands of objects with a collective mass of millions of pounds have been deposited in space. While some satellites and pieces of debris are reentering, others are being launched, so the space debris population remains constant at approximately 5,000 pieces large enough to be tracked from Earth (thousands mure are too small to be detected). This uncontrolled space population presents a growing hazard of reentering objects and in-space collisions.

As objects reenter, they usually burn up through the heat of friction with Earth's atmosphere, but large pieces may reach the ground. This can constitute a danger to people and property, although there is no proof that anyone has ever been struck by a piece of space debris. There are numerous cases of such debris reaching the ground, however, including the reentry of the U.S. Sk, lab over Australia in 1979, and the unexpected reentry of two Soviet nuclear reactor powered satellites in 1978 and 1983.

The hazard of in-space collisions is created both by multiple collisions between pieces of debris and by intentional or unintentional explosions or fragmentations of satellites. When space objects collide with each other or explode, thousands of smaller particles are created, increasing the probability of further collisions among themselves and with spacecraft. A spacecraft is now more likely to be damaged by space debris than by small micrometeorites. For large, long-life orbital facilities, such as space stations and spaceports, the collision probabilities will become serious by the year 2000, requiring bumper shields or other countermeasures, and more frequent maintenance.

All spacefaring nations should adopt preventive measures to minimize the introduction of new uncontrolled and long-lived debris into orbit. Such countermeasures include making all pieces discarded from spacecraft captive, deorbiting spent spacecraft or stages, adjusting the orbits of - -ansfer stages so that rapid reen: $: \mathrm{v}$ is assured due to naturai disturbances, and designuiuing long-life disposal orbits fo: high altitude spacecraft. The increasing hazard of space debris must be hatted anci reversed.

Typical Student Questions
 and
 Discussion

THE SPACE SHUTTLE

How long could you survive In space without a space suit?
As long as you could hold your breath. Once you exhale, there is nothing to breathe so you would sufficate.

What is a space suit used for?

The space suit serves several functions. First, it provides oxygen for the astronaut to breathe. Second, it serves as a thermal protector from the radiation in space. Finally, it provides a pressurized environment which is similar to the atmospheric pressure we experience here on Earth.

If you didn't have a spice suit on while in space, what would happen to you? Would you "explode" like a balloon because of the lack of pressure?

It is difficult to say because it has never happened to anyone. Scientists speculate that you would not "explode", but that it would be very uncomfortable. It would be similar to the sensation a deep seadiver experiences when he dives thousands of feet under water.

Is there any sound aboard the Space Shuttle?

Yes. Since the cabin of the shuttle is filled with air for the astrona ts to breathe, there is a medium for sound waves to travel through. The astronauts can hear each other speak as well as other sounds on board.

Can you have a pregnant astronaut in space?
Yes. There is no evidence so far to prove that the normal human functions are interrupted by the effects of weightlessness.

246

SOLID ROCKET BOOSTERS AND EXTERNAL TANK

SOLID ROCKET BOOSTER

AFT EXTERNAL TANK

FORWARD EXTERNAL ATTACHMENT

PAYLOAD BAY

THE PAYLOAD BAY CAN CARRY ONE OR MORE SATELLITES INTO SPACE OR CAN BE USED TO BRING SATELLITES BACK TO EARTH.
THE PAYLOAD BAY IS 15 FEET IN DIAMETER AND 60 FEET LONG AND THE ORBITER CAN CARRY UP TO 65,000 POUNDS INTO ORBIT

251

SDACASATUM, F-FROM LAUNCH.TO LANDING

IHEFLIGHT

Ignition
Litt-off
Mach I
Maximum dynamic pressure
Solid Booster Seperation
SRB jettison
Normal 3 g limit
MECO command
External tank separation
OMS1 ignition
OMS 1 cutoff
OMS 2 ignition
OMS 2 entry into orbit
Orbiter operations
Re-entry
Landing

Time (sec)	Altitude	Velocily
0.0	(194')	
0.2	(194)	
53	25,398'	1,063 (ref)
54	26,328'	1,080
72	27 mi .	3200 mph
131.7	165,604	4193 (ref)
454	397,230'	20,119 (inertial)
512.4	386,322'	25,591
529.9	388,872'	25,666
632.4	414,206'	25,638
721.1	433,666'	25,78u
2640.4	794,227	25,336
2717.4	795,865'	25,471
	100.600 mi .	
	76 mi .	17,400
	0	200

BE-ENTB

Entering the atmosphere:
(Temperature at re-entry: $2300^{\circ} \mathrm{F}$)

	Allitude	Soeed
	48 mi	$17,670 \mathrm{mph}$
	20.5 mi	$2,976 \mathrm{mph}$
25%	458 mi	$1,064 \mathrm{mph}$
2.3 mi	458 mph	
	0 mi	217 mph

Fact Book

THE SHUTTLE SYSTEM

ITS SIZE:
Shuttle System

Length	184^{\prime}
Wing Span	78^{\prime}
Height	76^{\prime}
Weight at Litt-off	$4,457,825 \mathrm{lbs}$.
at return	$514,000 \mathrm{lbs}$.
Thrust	$6,925,000$
Diameter	-

Cargo Bay
60^{\prime}
-
-
$(65,000 \text { \#s. })^{*}$
-
-
15^{\prime}

Orbiter
External Tank
Solid Boosters (2)
Payload Arm

Some interesting facts:

- Volume of crew's quarters $2,625 \mathrm{cu}$. ft.
- The orbiter is similar in size to a DC-9 jet.
- The landing runway at Kennedy Space Center is 2.83 mi . long $\times 56 \mathrm{mi}$. wide.
- The solid rocket boosters can be used 20 times.
- The orbiter is reusable for 100 missions.
- The length of a mission can be up to 30 days.
- The number of crew/passengers on the orbiter is 7.
- The external tank is filled with liquid hydrogen and liquid oxygen. (101 tons liquid hydrogen, 603 tons liquid oxygen). The external tank is used only once.
- Maximum gravity forces experienced is 3G's.
- Always takes off from East Coast (over water for safety) heading East (to take advantage of earth's rotation.)
- Countdown begins three days before actual lift-off.
- No human photographers are allowed within 3.5 miles of the launch pad.
- The Crawler Transporter is $131^{\prime} \times 114$ '.

STAGES OF SHUTTLE MISSION

From: Civil Air Patrol Charts, Maxwt II Air Force Base
Fact Book

5. ORBITAL OPERATIONS

DELIVERY INTO EARTH ORBIT

THIS IS THL PRIMARY MISSION FOR THE SPACE SHUTTLE. THE ORBITER CAN DELIVER UP TO 65.000 POUNDS INJTO EARTH ORBIT. THI® MAY BE ONE LARGE SATELLITE OR UP TO FIVE SMALLER ONES.
ESTABLISH ITSELF IN ANY DESIRED POSITION IN A SPECIFIC ORBIT OR CHANGE ORBITS.

RETRIEVAL OR IN-ORBIT SERVICING OF SATELLITES

THE SPACE SHUTTLE IS MORE THAN JUST A TRANSPORT VEHICLE. THE ORBITER CAN RETRIEVE PAYLOADS FROM ORBIT FOR RETURN TO EARTH. ALSO, WHEREVER POSSIBLE SATELLITES WILL BE "PLUCKED" OUT OF SPACE, REPAIRED, AND RETURNED TO ORBIT.

RETRIEVAL OF PAYLOAD FROM ORBIT FOR RETURN TO EARTH.

MANNED SPACE LABORATORIES

THE ORBITER WILL TRANSPORT MANNED LABORATORIES AND THEIR CREWS INTO EARTH ORBIT. ONE SUCH LABORATORY, SPACELAB, WAS BUILT BY EUROPEAN COUNTRIES. THE SPACELAB SCIENTISTS WILL LIVE IN THE ORBITER AND ENTER THE SPACELAB TO WORK. MANY OF THESE SCIENTISTS WILL BE FOREIGN PERSONNEL. SPACELAB WILL REMAIN IN ORBIT FOR UP TO THIRTY DAYS.

Jotin F. Kennedy Spece Center

MnSn

Cemini 11	Sept. 12.15, 198/ Guen (A)	Nawy Comdr. Charhes Conred, Jr. Navy Lt. Comdr. Rictiard F. Gordon, Jr.	71:17
Gemini 12	Nov. 11-15, 1966 Wasp (A)	Navy Capt. James A. Lovell, Jr. USAF Maj. Edwin E. Aldrin, Jr.	9435
APOLLO			
Apolio 1	Len. 27. 1967	USAF Lt. Col. Virgil I. Grissom USAF Li. Col. Edward H. White, II Navy Lt. Comor. Roger Chafee	
Apollo 4	Nov. 4, 1967 Eennington (P)	Unmanned	9:37
Apollo 5	Jan, 22, 1968	Unmanned	7:50
Apollo 6	April 4. 1968 Okinawa (P)	Unmenned	$9: 57$
Apollo 7	Ocr. 11-22, 1968 Essex (A)	Nawy Capt. Walter M. Schirra, Jr. USAF Maj. Dorn Eisele Civiliz Walter Cunningham	260 08:45
Apolio 8	Dec. 21-27. 1968 Yorktown (P)	USAF Col. Frenk Borman Navy Capt. James A. Lovell, Jr. USAF Lt. Col. William Anders	147:00:11
Apollo 9 (Gumdrop and Spiderl	March 3-13. 1969 Guadalcand (A)	USAF Col. Jomes A. McDivitt USAF Col. David R. Scott Civilian Russell L. Schweickart	241:00:53
Apollo 10 (Charlie Brown and Snoopyl	May 18-28. 1869 Prinction (P!	USAF Col. Thomas P. Stafford Navy Comdr. John W. Young Navy Comdr. Eugene E. Cernan	192 03:23
Apollo 11 (Columbia, Eade)	July 16-2'. 1969 Hone: (P)	Civilian Neil Armstrong USAF Lt. Col. Michael Collins USAF Col. Edwin E. Aldrin, Jr.	195:18:35
Apolio 12 (Yankee Clipper and Intrepid)	Nov. 14-24, 1989 Hornet (P)	Navy Condr. Charles Corrad, Jr. Navy Comdr. Richard F. Gordon, Jr. Navy Comdr. Alan L. Been	244:36:25
NOTES: 8. There we 8 no mimions designeted at Apollo 2 and Apollo 3			

Docked with Agena 11 twice; first tethered filights: two EVAs; highest altitude in Gemini progran; 853 miles: 44 orbits
Three EVAs total 5 hrs. 30 min.; 59 orbits

Planned as first manned Apollo Mission; fire during ground test on 1/27/67 took lives of astronauts; posthumously designated as Apolio i. 5
First flight of Satum V launch vehicle. Placed unmanned Apollo command and service module in Earth orbit.

Earth orbital fight test of unmanned Lunar Module. Not recovered Second unmanned test of Satum V and Apollo
Tested Apollo Cormmand Module in Earth orbit; 163 orbits

First manned Satum V Iaunch: 10 lunar orbits

Earth orbital mission; first manned flight of LM : two EVAs total 2 hrs. 8 min.il51 orbits

31 lunar orbits; LM descended to within nine miles of lunar surface

First manned lunar Ianding; Sea of Trasquility: one lunar EVA 2 hrs. 48 min.: 46 lbs. lunar samples
Lended Ocean of Storms; two lunar EVAs total 7 hrs. 46 min .75 lbs. samples

Apollo 13 10 dysery and Aquarius)	April 11.17. 1970 Iwo Jima (P)	Navy Capt. James A. Lovell, Jr. Civilian Fred W. Haise, Jr. Civilian John L. Swigert, Jr.	142:54:41
Apollo 14 IKitty Mank and Antares)	Jen. 31.Feb 9, 1971 New Orleans (P)	Navy Capt. Alen B. Shepard, Jr. USAF Maj. Stuart A. Roose Nayy Comdr. Edgur D. Mitchell	216:02:01
Apollo 15 (Endecvour and Falcon)	July 26-Aug. 7. 1971 Okinawa (P)	USAF Col. David R. Scott USAF Lt. Col. James B. Irwin USAF Maj. Alfred M. Worden	295:12:00
Apollo 16 (Casper and Orion)	April 16.27. 1972 Ticonderoga (P)	Nawy Capt. John W. Young Navy Lt. Comdr. Thomas K. Mattingly, II USAF Lt. Col. Charles M. Duke, Jr.	265:51:06
Apollo 17 (America and Challenger)	Dec. 7.19. 1972 Ticonderoga (P)	Nawy Capt. Eugene A. Cernan Navy Comdr. Ronald E. Evans Civilian Harrison H. Schmitt (Ph D.I	301:51:59

Lunar landing aborted after oxygen tank ruptured; safe recovery

Landed Fra Mauro; two lunar EVAs total 9 hrs. 23 min.; 94 lbs. samples

Landod Hadisy Apennine; three lunar EVAs total 18 hrs. 46 min.: 169 lbs . samples
Landed Descertes highlands ; three lunar EVAs total 20 hrs. 14 min., 213 lbs samples
Landed Twurus-Littrow; three lunar EVAs total 22 hrs. 4 min.; 243 lbs. samples

Reentered atmosphere 100 -ton space station visited by three 7.11 .79 on orbit 34.9-1 crews

28 days	Repaired Skylab; 404 orbits; 392
49 min. 49 se.	\quadexperiment hours; three EVAs total

59 deys
11 hrs.
9 min. 4 sec.
84 days
1 hr .
15 min .31 sec.
9 days
1 hr.
28 min. 24 sec.

Apollo docked with Soviet Soyuz spacecraft ${ }^{6}$ July 17; separated July 19

[^2]

First (STS.1) liftoff of the Spece Shuteto, April 12, 1981.

TME FHTMEB OF MRNNE BFREE FLITNT

The 2 -million kilogran (4.5 million pound) Space Shuttle is' ie first ve. hicle designed to carry both crow and lagge unmanned applications and scienufic spacecraft into orbit. The primary tunction of prior manned missions was the scientific exploration of the space environment. or the surface of the Moon. Large spacecraft, such as the many geosynchionous orbit communicalions and weather satellites, planetary explorers. or scientific research probes. were launched on unmanned vehicles. The Space Shuttle combines the weightifing capacity of the laggest unmanned launchers with the unmatched ability of an on-the-spot human being to make decisions and take actions

No machine yet built can equal a trained astronaut at problem solving in space, as the recovery and eventual success of the Skylab program amply demonstrated Shuttle astronauts have repaired a satellite in space and re. covered others for more extensive reparis on the ground.

The Space Shurtle can take up to seven crew members-men and women-into low Earth orbit. It has a combines thrust at liftoff of aboui 28.6 miltion newtons (6.5 million pounds) from its two solid rocket boosters and the three liquid-propellant main engines on the o biter. Its top capacity into low Earth orbit will be 29.500 kilograms ($\mathbf{6 5 . 0 0 0}$ pounds) in its lully operational configuration. This can consist of one large payload; a combination of tip to three spacecraft with attached solid stages for injection into higher orbits, along with smaller packages that remain with the orbiter but must operate in the space environment; or a mixture of these types of pay. loads. The Space Shutlle will be the only American vehicie designed for manned spaceflight for the indefinite future.

MANNED SPACE FLIGHT COSTS*

Mercury Program.	\$ 392,600,000
Gemini Program	1,283,400,000
Apollo Program.	25,000,000,000 •
Skylab Program.	2,600,000,000
Apollo-Soyuz Test Project. (U S. portion)	250,000,000

-Includes rockets, rocket engines, spacecraft, tracking and data acquisıtion, operations, operations support and facilities.

- Apollo mission cost range from $\mathbf{\$ 1 4 5}$ million for Apollo 7. the first manned Apollo mission, to $\$ 450$ million for Apollo 17. the last flight in the program.

NMSN
Nillimioll A_{1} "r.uthe .and SornAdr mulialtw

All You Need to Know for this Unit

Space stations will soon be part of your reality. They will serve as thresholds for further exploration of our sular system and other gaiaxies.

Actual space colonies have been seriously considered. Because of the threats of nuclear annihilation and the ecological unbalance generated by unchecked pollution, serious thought has been given to the creation of a space colony. In this module the only science which is required is provided by general statements about the limitations that will be encountered when building in space. Although it would be possible to place a colony within the earth's atmosphere, this is very unlikely. The first lesson examines the different layers of the earth's atmosphere in case someone decides that this is where he or she would like to build.

BasicCriteria for Building in Space

1. Because of the greatly reduced gravitational pull, toothpicks will be as strong as steel beams.
2. Unless you allow for rotation and place your colony close to a planet, you will have 24-hour days and no nights.
3. Without a gaseous atmosphere, the heat of the sun will be much more intense than on the earth if you remain at the same distance from the sun.
4. Gravity problems:
a. Uniess the colony rotates, there will be cortinuous weightlessness. Human muscles tend to atrophy in prolonged weightlessness, particularly the heart muscle.
b. Without gravity, plant roots do not know which way to grow (although there has been some success growing plants on a shuttle mission).
c. Producing gravity would require all or part of the space colony to rotate. The rotational speed and the diameter of the colony determine the amount of gravity. If the diameter of the colony were too small, it would have to spin at a tremendous speed producing a dizzying effect for the inhabitants. However, it may be necessary to duplicate the earth's gravity. This could lead to interesting options for the students.
d. There are advantages to having weightlessness: ease of movement, new construction materials, new games, etc.
5. Problems that need to be addressed by the students are the following:

- How and where will the colonists get their food?
- How do they get the gasses necessary to breathe?
- What do they do about their waste products?
- How do they produce energy?

Students may design any type of colony or space station using one or all geometric solids. All that is necessary scientifically is that they make an attempt to address the questions posed above, not that their ideas provide workable solutions.

[^3]
SPACE STATION

In a purely physical sense, the Space Station will overshadow all preceding space facilities. Although often referred to as the "NASA" Space Station, it will actually be international in character; Europe, Canada, and Japan, in particular, plan to develop their own hardware components for the Station. As currently visualized, the initial Station will be a 350 -foot by 300 -foot structure containing four pressurized modules (two for living and two for working), assorted attached pallets for experiments and manufacturing, eight large solar panels fn- power, communications and propulsion systems, and a robotic manipulator system similar to the shuttle arm. When fully assembled, the initial Station will weigh about 300,000 pounds and carry a crew of six, with a replacement crew brought on board every 90 days.

To deliver and assemble the Station's components, 12 shuttle flights will be required over an 18 -month period. The pressurized modules used by the Station will be about 14 feet in diameter and 40 feet long to fit in the shuttle's cargo bay. The Station will circle Earth every 90 minutes at 250 -mile altitude and 28.5 degree orbital inclination. Thus the Station will travel only between 28.5 degrees north and south latitudes. Unoccupied associate platforms that can be serviced by crews will be in orbits similar to this, as well as in polar orbits circling Earth over the North and South Poles. Polar-orbiting platforms will carry instruments for systems that require a view of the entire globe.

The Station will provide a versatile, multifunctional facility. In addition to providing housing, food, air, and water for its inhabitants, it will be a science laboratory performing scientific studies in astronomy, space plasma physics, Earth sciences (including the ocean and atmosphere), materials research and development, and life sciences. The Station will also be used to improve our space technology capability, including electrical power generation, robotics and automation, life support systems, Earth observation sensors, and communications.

The Station will provide a transportation hub for shuttle missions to and from Earth. When the crew is rotated every 90 days, the shutule will deliver food and water from Earth, as well as materials and equipment for the science laboratories and manufacturi - facilities. Finished products and experiment results will be returned to Earth. The Station will be the originating point and destination for flights to neart; platforms and other Earth orbits. The orbital maneuvering vehicle used for these trips will be docked at the Station.

The Station will be a service and repair depot for satellites and platforms orbiting in formation with it. Robotic manipulator arms, much like those on che shuttle, will position saiellites in hangars or special docking fixtures. "Smatt" repair and servicing robots will gradually replace astronauts in space suits for maintenance work, as sat-llites become more standardized and modular in design.

SELF-REPLICATING FACTORIES IN SPACE

Factories that could replicate themselves would be attractive for application it. space because the limited carrying capacity of our rocket vehicles and the high costs of space transport make it difficult otherwise to establish factories with large croacities. The concept of self-replicating factories was developed by the mathematician John von Neumann. Three components are needed for industrial establishment in space: a transporting machine, a plant to process raw material, and a "job shop" capable of mal ing the heavy, simple parts of more transporting machines, process plants, and job shops. These three components would all be tele-operated from Earth, and would normally be maintained by robots. Intricate parts would be supplied from Earth, but would be only a small percentage of the total. Here is an example of how such components, once established, could grow from an initial "seed" exponentially, the same way that savings grow at compound interest, to become a large industrial establishment:

Suppose each of the three seed components had a mass of 10 tons, so that it could be transported to the Moon in one piece. The initial seed on the Moon would ther be 30 tons. A processing plant and job shop would also be located in space-20 tons more. After the first replication, the total industrial capacity in space and on the Moon would be doubled, and after six more doublings it would be 128 times the capacity of the initial seed. Those seven doublings would give us the industrial capacity to transport, process, and fabricate finished products from over 100,000 tons of lunar material each year from then onward. That would be more than 2,000 times the weight of the initial seed-a high payback from our initial investment.

WEIGHTS

Jumbo, the Tufts Elephant
Bag of Potatoes
Refrigerator Perry, Football Player
A Brick
A Piano
MBTA Bus - Empty
Volkswagon

Weight a Champion Weight Litter

Super
Sedan
Convertible
Can Bench Press
Can Knee Lift

HEIGHTS
Prudential
John Hancock
Upper neck of Mystic River Bridge
Bunker Hill Monument
Mt. Washington
Big Blue in the Blue Hills
Telephone Poll
Basketball Hoop
Doorway
Manute Bol: Basketball Player
Spud Webb: Basketball Player
12 year old (on average)
Teacher (on average):
Fact Book 64

Woman

8012 lb.
5 lb. or 10 lb .
310 lb.
4 lb.
565 lb.
16 Tons
2072 lb.
1973 lb.
2127 lb.
627 lb.
1200 lb.

750 ft.
800 ft .
16 ft.
221 ft.
6288 ft.
610 ft.
17 ft.
10 ft .
6 ft. 6 inches
7 ft. 6 inches
5 ft .7 inches
4 f. 10 inches
5 f. 9 inches
5 ft. 4 inches

LENGTHS

Football Field	100	yds.
Knight Rider Transam	192	inches
Lincoln Continental	200.7	inches.
MBTA Bus	40	ft.
Family Swimming Pool	25	ft
Olympic Swimming Pool	100	yds.
Burin's Ice Rink	220 ft	
Boston Skating Club Ice Rink	193	ft
Basketball Court	94	Ht
Concorde Jet	202 ft.	

DISTANCES

Boston to Disneyland
Distance through Earth from One Pole to another Boston to Chicago

1116 miles
7927 miles 438 miles

SPEEDS

Cross Country Sking

.iurning
Swimming
Bicycling
Walking
Stagecoach
Early Steam Locomotive (Stevenson's Rocket)
Henry Ford's First Car: Model T
Snowmobile
Electric Train
Jet
Supersonic Transport (SST)
Speed of Light
Speed of Sound (avg.)
Maximum speed of Orbiter
Orbital speed of Columbia

5 m.p.h.
6.5 m.p.h.

40 yds./min.
10 m.p.h.
4 m.p.h.
8 m.p.h.
15 m.p.h.
45 m.p.h.
1 \% 5 m.p.h.
200 m.p.h.
650 m.p.h.
1450 m.p.h.
186,000 m.p.h.
738 m.p.h.
25,780 m.p.h.
25,366 m.p.h.

USEFUL FORMULAE
 Geometric Shapes

Rectangles:

Perimeter:
Area:

$$
\begin{aligned}
& P=2 H+2 B \\
& A=B H
\end{aligned}
$$

Trianglas:

Perimeter:
Area:
$P=A+B+C$
$A=1 / 2 B H$

Circles:

Diameter:
$D=2 r$
Circumference:
$C=\pi D$
Area:
$\mathrm{A}=\pi \mathrm{r}^{2}$

Tetrahedrons:

Surface Area:
Volume:
$S A=2 B H$
$V=1 / 3$ (Area of Base) • Height

Cylinders:

Surface Area:
Volume:
SA $=2 \pi \mathrm{rH}$
$V=\pi r^{2} H$

Spheres:

Surface Area:
$S A=4 \pi r$
Volume:
$V=4 / 3 \pi r^{3}$

Constants:

$\pi \approx 22 / 7$ or 3.14

OTHER FORMULAE

Travel:

Distance:
Rate:
Time:
$\mathrm{D}=\mathrm{RT}$
$\mathrm{R}=\mathrm{D} / \mathrm{T}$
$T=D / R$
$\mathrm{D}=$ Distance
R = Rate (Speed)
$T=$ Time

Gravity:
Force of Gravity
Between
Two Objects

$$
F=\frac{G \cdot M_{1} \cdot M_{2}}{D^{2}}
$$

G = Gravity Constant $M_{1}=$ Mass of first object $M_{2}=$ Mass of second object $\mathrm{D}=$ Distance between the objects
g's Pulled in Centrifugal Force:

$$
g^{\prime} s=\frac{4 D}{T^{2}}
$$

D = Distance from center
T=Turning period
(Time it takes to make a complete turn)

Thrust:

Thrust is a type of Force
Force $=$ Mass \cdot Acceleration

MATHEMATICAL CONVERSIONS

$$
\begin{aligned}
1 \mathrm{FOOT} & =12 \text { INCHES } \\
1 \text { YARD } & =3 \mathrm{FEET} \\
1 \mathrm{MILE} & =5280 \mathrm{FEET} \\
1 \text { MINUTE } & =60 \mathrm{SECONDS} \\
\text { IHOUR } & =60 \mathrm{MINUTES} \\
1 \text { DAY } & =24 \mathrm{HOURS} \\
1 \text { YEAR } & =365 \text { DAYS } \\
1 \mathrm{CUP} & =80 \text { NCES } \\
1 \mathrm{TON} & =2000 \mathrm{POUNDS}
\end{aligned}
$$

COMPARISON OF ENGLISH AND METRIC MEASURES

$$
\begin{aligned}
1 \text { INCH } & =2.54 \text { CENTIMETERS } \\
1 \text { FOOT } & =0.305 \mathrm{METERS} \\
1 \text { YARD } & =0.914 \mathrm{METERS} \\
1 \text { MILE } & =1.609 \mathrm{KILOMETERS} \\
1 \text { OUNCE } & =29.573 \text { MILLILITERS } \\
1 \text { LIQUID QUART } & =0.946 \text { LIERS } \\
1 \text { GALLON } & =3.785 \text { LITERS }
\end{aligned}
$$

ABBREVIATIONS

$\mathrm{INCH}: \mathbb{I N}$.
FOOT: FT.
YARD : YD.
MILE : MI.
MINUTE : MIN.
HOUR:HR.

YEAR:YR.
CUP:C.
POUND:LB.
TON:T.
QUART : QT.
GALLON : GAL.

MILLIMETER: MM.
CENTIMETER:CM. METER : M. KILOMETER : KM. LITER: L.

HOW TO ROUND

Perceptual Technique: The Number Line

- Round the number 412,316,752 to the .aillions.
- Draw a part of the number line, marking the appropriate ond points.

The end points are determined by the place to which you intend to round, by considering consecutive multiples of the rounding place.

- In this case you are rounding to millions.

The consecutive multiples of millions are 412 million and 413 million.

- Mark the half-way point between them.

- Estimate the original number on the number line.

- Round the original number to the endpoint which is closer.

Verbal "Recipe":

- Mark the place to which the number is to be rounded with a circle (in this case the millions). Draw an arrow over the following place.
$412)^{3} 16,752$
- Change arrow-marked digit, ard all digits to its right to zeroes: 412,000,000
- Look at the original number.

If the arrow-marked digitis 5 or more, increase the circled digit by 1 . If the arrow-marked digit is less than 5, leave the circled digit unchanged.

Thus, $412,000,000$ is the number rounded to the millions place.
Writing numerals in rounded form:

- Point out to students that you could write: 412,316,752 rounded as the rounded numeral $412,000,000$ or 412 million.

CALCULATING USING ROUNDED NUMBERS

Addition

Problem: \quad What planet is about 50 million miles farther from the sun than the Earth is?

Procedure:

Gather data: Distance from unknown planet to the sun = D Distance from Earth to the sun $=92,963,115 \mathrm{mi}$.

Think: $\quad D=50,000,000 \mathrm{mi} .+92,963,115 \mathrm{mi}$.
Change to rounded numerals:
D ~ 50,000,000 mi. + 92,000,000 mi.
D ~ 142,000,000 mi.
Solution: Mars is $141,642,351 \mathrm{mi}$. from the sun. Rounding to millions, Mars is $142,000,000 \mathrm{mi}$. from the sun.

Subtraction

Problem: What is the difference between the diameter of Venus and the diameter of Jupiter?

Procedure:
Gather data: Difference in diameter $=\mathrm{D}$
Diameter of Venus $=88,733 \mathrm{mi}$.
Diameter of dupiter $=7,521 \mathrm{mi}$.
Think: $\quad D=88,733 \mathrm{mi} .-7,521 \mathrm{mi}$.
Change to rounded numerals:
D ~ 89,000 mi. - 8,000 mi.
D ~ $81,050 \mathrm{mi}$.
Solution: The difference in diameter between Venus and Jupit. is about $81,000 \mathrm{mi}$.

$$
200
$$

CALCULATING
 USING ROUNDED NUMERALS

Multiplication

Problem: Calculate the distance around the Earth at the equator.
Procedure:
Gather data: Distance around can be thought of as the circumference of the Earth's Great Circle (C).
Diameter of Earth $=7,921 \mathrm{mi}$.
Think: $\quad \mathrm{C}=\pi \mathrm{D}$
$\mathrm{C}=\pi$ (7921 mi .)
Change to rounded numerals:
C ~ $3.14(8000 \mathrm{mi}$.)
C ~ 3(8000 mi.)
C $\sim 24,000 \mathrm{mi}$.
Solution: The distance around the Earth at the diameter is about 24,00 miles.

Division

Problem: \quad The distance around a particular planet is 234,143 miles.
What is the approximate diameter of the planet?
Which planet is it?
Procedure:
Gather data: Distance around planet $=\mathbf{2 3 4 , 1 4 3} \mathbf{~ m i}$.
Think: Distance around can be thought of as the circumference at the planet's Great Circle. (C)
$\mathrm{C}=\pi \mathrm{D}$
$234143 \mathrm{mi}=\pi \mathrm{D}$
Change to rounded numerals:
200,000 mi ~ 3.14D
$200,000 \mathrm{mi} \sim 3 \mathrm{D}$
$200.000 \mathrm{mi} \sim$ D
3
$70,000 \mathrm{mi} \sim \mathrm{D}$
Solution: The diameter of the unknown planet is about 70,000 miles. The diameter ofSaturn is 74,607 miles. Rounding to the tens of thousands, Saturn's diameter is about 70,000 miles.

Math/Space Mission

 Problem Deck

Math/Space Mission
Problem Deck
Summary of Cards

CARD NO.	ACTIVITY	MATH TOPIC TO WHICH ESTIMATION IS APPLIED	LEVEL OF DIFFICULTY
1	Let's Communicate wih Puto	Using Formulae	Challenge
2	Comparing the Volume and Mass of Earth \& Moon	Ratio Using Formulae	Challenge
3	Juphers Moons	Rounding and Comparing	Practice
4	More of Juplers Moons	Rounding and Comparing	Practice
5	"Three for Three"	Corrustation	Moderate
6	Are You an Expert?	Computation	Moderate
7	Hands Around the Wortd	Circumforence Calculation	Moderate
8	Robots Around the Moon	Clrcumerence	Moderate
9	Travelling in tha Solar System... From the Minute You We, e Bom	Using Formulae: D=RT	Challenge
10	Passing the Planets, "How Old AmI Now?"	Using Formulae: D=RT	Challenge
11	90\% of the Solar System?	Computation, Percent	Practice
12	Lining up the Planets	Least Common Multiple	Moderate

Regional Math Newwotk - Harvard Graduake School of Edvezition - Harvard Universliy

SUPPOSE THERE UERE SOMEONE OR SOMETHING ON PLUTO TRYING TO COMMUNICATE WITH US!

YOU SEND A MESSAGE TODAY. the message will travel at the speed of light.

HOW LONG UILL IT TAKE FOR THE MESSAGE TO GET TO PLUTO?

the ruerfge radius of errth is 3963 MILES. the ruerage radius of the moon is $\mathbf{1 0 8 0}$ Miles.

What is the ratio of the uolume of THE ERRTH TO THE UOLUME OF THE MOON?
(UOLUME $\left.=4 / 3 \cdot \pi \cdot(\text { RRDIUS })^{3}\right)$

WHAT IS THE RATIO OF THE MASS OF THE EARTH TO THE MASS OF THE MOON?

WHAT DO YOU THINK EHPLAINS THE DIFFERENCE IN THESE ANSUERS?

295

Problem Card 2

[^4]JUPITER IS THE LARGEST PLANET OF OUR SOLAR SYSTEM AND IT ALSO HAS THE MOST "MOONS". THE PIONEER AND UOYAGER MISSIONS CONFIRMED JUPITER HAS 16 SATELLITES. SOME RRE QUITE SMALL IN DIAMETER AND OTHERS ARE UERY LARGE.

- JUPITER'S SATELLITE ELARA IS 13,895,000 MILES FROM JUPITER. WRITE THE DISTANCE IN ШORDS.
- HIMALIR IS APPROHIMATELY SEUEN MILLION ONE HUNDRED THIRTY THOUSAND MILES FROM JUPITER. URITE THE DISTANCE IN NUMERALS.
- PASIPHAE IS ABOUT $\mathbf{1 4 , 5 0 0 , 0 0 0}$ MILES FROM JUPITER. SINOPE IS APPROHIMATELY TWO HUNDRED THOUSAND MILES FURTHER FFOM JUPITER. HOW FRR IS SINOPE FROM JUPITER IN MILLIONS OF MILES?

SATELLITE OF JUPITER	DISTANCE FROM JIIPITER	SATELLITE OF JUPITER	DISTANCE FROM JUPITER
CRLLISTO	$1,170,130$ MILES	LYSITHEA	$7,280,003$ MILES
EUROPA	417,009 MILES	CARME	$13,8,94,700$ MILES
ELAKA	$7,301,303$ MILES	PASIPHAE	$14,500,000$ MILES
GRNYMEDE	665,112 MILES	LEDA	$6,891,013$ MILES

- LIST THESE SATELLITES IN THE ORDER OF THEIR DISTPINCES FROM JUPITER, fROM CLOSEST TO FARTHEST.
- ROUND THE DISTAINCE FOR EACH SATELLITE FROM JUPITER TO THE NERRESY MILLION MILES.

CALLISTO IS 1,170,000 MILES FROM JUPITER. THEBE IS APPROHIMATELY 55,000 MILES LESS THAN ONE-SIATH OF CALLISTO'S DISTRNCE FROM JUPITER. HOW FAR IS THEBE FROM JUPITER?

THE SATELLITE 1979 dJ IS $127,600 \mathrm{KM}$ FRGM JUPITER. ONE KILOMETER IS APPROKIMRTELY 0.62 MILES. HOW FAR IS 1979 J3 FROM JUPITER IN MILES?

THEBE HAS R DIAMETETi OF 47 MILES AND CALLISTO HAS A DIAMETER OF 2,996 MILES. APPROHIMATELY HOW MANY TIMES SMALLER IS THEBE THAN CALLISTO?

Io's distance in kilometers can be found by using the following CLUES.
f) THE THOUSANDS DIGIT IS ONE-HALF THE TEN-THOUSANDS DIGIT.
B) THE HUNDRED-THOUSAND DIGIT IS TWICE THE TEN-THOUSANDS DIGIT.
C) THE HUNDREDS DIGIT IS THE SUM OF THE DIGITS IN THE TEN-THOUSAND AND HUNDRED-THOUSAND PLACES.
D) THE SUNi OF THE DIGITS IS 13.
E) RSSUME FLI. OTHER DIGITS ARE ZERO.
imagine "hands across america" were ehtended to "hands around the WORLD." HOU MRNY PEOPLE STRETCHING THEIR ARMS WOULD IT TAKE TO GO AROUND THE EARTH AT THE EQUATOR?

CIRCUMFERENCE OF A CIRCLE $=\pi$ * DIAMETER. hSSUME THE RUERAGE REACH IS 5 FEET, FROM FINGER TIP TO FINGER TIP.

Regional Meth Notwork • Havvard Graduate Schcol of Education • Havard University

IF "HANDS ACROSS AMERICA" UERE EHTENDED TO
"ROBOTS AROUND THE MOON,"

how many hobots would it take to go hround the

 MOON AT ITS "EQUATOR"?CIRCUMFERENCE - π * DIAMETER RSSUME A ROBOT'S RERCH IS 3 FEET, FROM "ROBOT'S PROBE-TIP" TO "ROBOT'S PROBE-TIP."

Problem Cerd 8
Regional Maxh Network - Harvard Graduate School of Education • Harvard University 301

HOU FAR IN THE SOLRR SYSTEM UOULD YOU HRUE TRAUELLED, IF YOU STRRTED THE YEAR YOU UERE BORN AND WERE TRRUELLING IN YOUR UШ RT 55 MPH?

HOU FAR IN THE SOLAR SYSTEM UOULD YOU HAUE TRAUELLED, IF YOU STARTED THE YERR YOU UERE BORN
fND UERE TRAUELLING IN THE SHUTTLE RT ABOUT 17,500 MPH? (ASSUMING YOU TRAUEL IN R STRAIGHT LINE.)

fSSUME THE OUTER PLANETS, JUPITER, SATURN, MARS, URANUS, PLUTO AND neptune form. a straight line from the sun rs they do now.
you are travelling on a saturn rocket, at $\mathbf{2 5 , 0 0 0} \mathbf{M P H}$. HOW OLD שOULD YOU BE RS YOU PASSED EACH PLANET?

$$
303
$$

Problem Card 10
Regional Math Network - Harvard Graduate School of Education • Harvard Univeraity

TUO PLANETS OF THE SOLAR SYSTEM RCCOUNT FOR MORE THRN $\mathbf{9 0 \%}$ OF THE TOTAL PLANETRRY MASS OF THE SOLRR SYSTEM.

WHICH TUO PLRNETS RRE THEY?

SHOU THAT THEY ACCOUNT FOR MORE THEN 90% OF THE TOTRL MRSS.

Regional Math Nietwork - Harvard Graduate School of Education • Harvard University
304
the planets errit, jupiter, saturn and uranus REUOLUE RROUND THE SUN APPROHIMATELY ONCE EUERY $1,12,30$ AND 84 YEARS RESPECTIUELY.

IF THEY RRE LINED UP NOW, WHEN WILL this happen hghin?
if the planets jupiter, saturn and uhanus
fre lined up now, how long will it be until this happens garin?

Probiem Card 12
Regional Math Notwork • Harvard Graduate School of Education • Harvard University
305

IF THE HEIGHT OF THE PRUDENTIAL BUILDING REPRESENTS THE DIAMETER OF THE ERRTH, WHAT CAN YOU FIND IN OUR CITY TO REPRESENT the dirmeters of the moon and the sun?

Problem Card 13

ONCE IN ORBIT, HOW LONG DOES IT TAKE THE ORBITER TO TRAUEL FROM KENNEDY SPACE CENTER (FLORIDA) UNTIL IT IS OUER PARIS? the orbiter is travelling from west to enst. (IGNORE HEIGHT ABOUE EARTH.)

Regional Math Network - Harvard Graduate School of Education • Harvard University

ARE YOU SUELL HERDED?

COMPARE THE DISTRNCE RROUND YOUR HEAD TO THE DISTRNCE RROUND THE EARTH. MERSURE THE DISTANCE RROUND

YOUR HEAD WITH R STRING.
FIND THE DISTANCE RROUND THE EARTH GT THE EQURTOR.

CIRCUMFERENCE $=\pi$ * DIAMETER

HOW MANY tIMES BIGGER IS THE DISTANCE AROUND THE EARTH THRN THE dISTANCE GROUND YOUR HEAD?

Regional Math Network - Harvard Graduaie School of Education - Harvard University

HOW LONG ШOULD IT TRKE TO TRAUEL TO NEPTUNE FROM EARTH, IF YOU TRRUELLED ON THE FASTEST KNOUN SPACE UEHICLE?

The fastest known space uehicle was the US-German orbiter. Its speed was 149,125 mph.

Problem Card 16
Regional Math Network - Harvard Graduate School of Education • Harvard University

THE DISTANCES IN THE UNIUERSE GRE SO GREAT that SCIENTISTS USE LIGHT YERRS to Mersure them.

f LIGHT YERR IS THE DIStRNCE LIGHT CAN thavel in oní yefr.

the nerrest known star in more than 4 ligh? jefrs fШनY FROM THE EARTH. HOW FAR RWAY IS IT?

[^5]
fT A COST OF $\$ 2000$ PER CUBIC FOOT, THE COST UOULD BE \qquad $?$

If yOU Lefue earth and return to efrth, COULD YOU UISIT EACH AND EUERY PLANET ONCE AND ONLY ONCE, fissuming you can thauel no more than 25 billion miles?

UHAT UOULD BE YOUR ROUTE?

ШHAT ASSUMPTIONS MUST YOU MAKE TO SOLUE THIS PUZZLE?

Problem Card 19
P.zgional Math Notwork - Harvard Graduate School of Education - Harvard University

312

SUPPOSE THE ORBITER, ONCE IN ORBIT, PaSSES DIRECTLY OUER THE PRUDENTIAL buILDING.

the orbiter will be trauell' G at A HEIGHT OF APPROHIMATELY 600 MILES AND IN THE SAME DIRECTION AS THE EARTH'S ROTATION.

IF the orbiter continues in the shme orbit, how long BEFORE IT PASSES OUER THE PRUDENTIAL GGAIN?

THE SPEED OF LIGHT IS RBOUT 186,000 MILES PER SECOND.
f LIGHT YERR IS THE DISTANCE LIGHT CRN TRAUEL IN 1 YERR. CRLCULRTE THE NUMBER OF MILES IN 1 LIGHT YERR. CALCULRTE THE SPEED OF LIGHT IN MILES PER HOUR.

A FICTITIOUS PUZZLE!

ROBERT CRIPPEN, NORMAN THAGARD AND FREDERICK HAUCK UERE CREW MEMBERS OF THE STS \# 7 MISSION UITH SALLY RIDE.

ONE CREU MEMBER WRS THE COMMANDER, ONE THE MISSION SPECIALIST, AND ONE THE PILOT.

THE MISSION SPECIALIST, AND ONLY CHILD, HAS FLOUN THE LEAST NUMBER OF YERRS. FRED HAUCK, WHO MRRRIED ROBERT CRIPPEN'S SISTER, HAS FLOUN MORE MISSIONS THAN THE COMMANDER.

MATCH THE CSEW MEMBERS TO THEIR JOBS.

315
Problem Card 22
Regional Math Network - Harvard Graduate School of Education • Harvard University

MOPÉ INTERPLANETARY TRAUEL PLANS

USING 25 BILLION MILES, WHAT IS THE MAHIMUM NUMBER OF PLANETS YOU COULD UISIT, fSSUMING YOU LEAUE EARTH AND RETURN TO EARTH?

UHAT ASSUMPTIONS MUST YOU MAKE TO SOLUE THIS PUZZLE?

Problem Card 23
Regional Math Network - Harvard Graduate School of Education - Harvard University
316

SUPPOSE 21 RSTRONAUTS ARE RUAILABLE FOR A LUNAR LANDING MISSION. 12 AStronfuts haue had orbital ehperience.
how many different chews of 3 can be made up?
how many of these crews would have ht least ONE GSTRONRUT UHO HAS HAD ORBITAL EHPERIENCE?

Problem Cerd 24
Regional Math Network - Harvard Graduato School of Education • Harvard University 317
hBOUT 6,695,520 SQUARE MILES OF THE ERRTH'S SURFRCE IS LAND. ABOUT HOW MUCH IF THE EARTH'S SURFRCE IS NOT LANO?

WHAT IS THE RATIO OF ERRTH'S LAND SURFGCE TO ITS WRTER SUAFACE?

IF A MAN UEIGHS 180 POUNDS ON ERRTH, ШHPT. ШOULD HE ШEIGH ON THE MOON?

DUE TO THE DIFFERENCES IN GRAUITY, ONE'S WEIGHT

 ON THE MOON IS ONE SIHTH OF ONE'S UEIGHT ON ERRTH.WHAT UOULD YOU WEIGH ON THE MODN?
...ON DENUS?
...ON MARS?

: WORLD CHAMPION WEIGHT LIFTER CAN LIFT 1200 POUNDS ON EARTH. IF HE WERE ON THE MOON aND WERE GBLE TO EHERT THE SAME LIFIING FORCE, HOW MANY POUNDS COULD HE LIFT?

Regional Math Network • Havvard Graduate School of Education • Harvard Universily

Summary of Facts for Planets, Moon \& Sun

	MERC	VENUS	EARTH	MOON	MARS	JUPITER	SATURN	URANUS	NEPTUNE	PLUTO	SUN
Average Drsance from Sun (Mies)	$\begin{aligned} & 8 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	8 8 8 0 0 0	8 8 8 $\mathbf{8}$ $\mathbf{0}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & n \\ & \vdots \\ & \vdots \end{aligned}$	8 0 0 0 0 7	8 0 0 8 0 8 8	$\begin{aligned} & 8 \\ & 8 \\ & \mathbf{8} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	8 8 \mathbf{o} $\mathbf{0}$ $\mathbf{~}$ N	8 0 8 8 0 0	25 mulion to nearest slar
Length of Year (Penod of Citin)	$\begin{aligned} & 88.0 \\ & \text { days } \end{aligned}$	$\begin{aligned} & 224.7 \\ & \text { days } \end{aligned}$	$\begin{gathered} 365.26 \\ \text { days } \end{gathered}$	$\begin{aligned} & 27.32 \\ & \text { days } \end{aligned}$	$\begin{aligned} & 1.88 \\ & \text { Years } \end{aligned}$	11.86 Years	29.46 Years	$\begin{aligned} & 84.01 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 164.8 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 247.7 \\ & \text { Years } \end{aligned}$	246 milition to next galaxy
Lengen of Day (Period ol Potetion)	$\begin{gathered} 58 \\ \text { days } \end{gathered}$	$\begin{aligned} & 243 \\ & \text { days } \end{aligned}$	24	$\begin{gathered} 27 \\ \text { diys } \end{gathered}$	24	9 hours	$\begin{gathered} 10 \\ \text { hours } \end{gathered}$	$\begin{gathered} 15 \\ \text { hours } \end{gathered}$	$\begin{gathered} 18 \\ \text { hours } \end{gathered}$	$\begin{gathered} 6 \\ \text { days } \end{gathered}$	$\begin{gathered} 25 \\ \text { days } \end{gathered}$
Averices Othin Speed (AARH)	107,300	78,500	66,500	2,300	54,100	29,300	21,600	15,300	12,200	10,600	560,000 around galactic center
Equatorial Diameter (Mies)	3031	7521	7927	2160	4197	88,733	74,600	31,600	30,200	2,113	865,000
Mass (Tona)	353×10^{20}	5.34×10^{21}	8.59×10^{21}	8.24×10^{19}	7.08×10^{26}	2.09×10^{24}	6.26×10^{23}	9.55×10^{22}	1.15×10^{23}	1.12×10^{19}	2.19×10^{27}
Escape Valocily (MPH)	9,619	23,042	25,055	5,324	11,185	141,020	88,139	48,096	54,136	751	1,373,000
Temperation $\begin{array}{ll}\operatorname{Max}{ }^{\circ} F \\ \operatorname{Min}{ }^{\circ} F\end{array}$	$\begin{gathered} 660 \\ -270 \end{gathered}$	$\begin{aligned} & 896 \\ & -27 \end{aligned}$	$\begin{array}{r} 136.4 \\ -128.9 \end{array}$	$\begin{aligned} & 225 \\ & -243 \end{aligned}$	$\begin{gathered} 80 \\ -190 \end{gathered}$	$\begin{gathered} 53,500 \\ -140 \end{gathered}$	-292	346	364	$\begin{array}{r} -382 \\ -390 \end{array}$	$\begin{gathered} 27,000,000 \\ 10,800 \end{gathered}$
- Moons	0	0	1	-	2	16+rings	23?+rings	5+rings	2	1	9 planets
Eccentricty of Orth	0.206	0.007	0.017	0.055	0.093	0.040	0.056	0.047	0.009	0250	-
Surtace Grivily	38	. 90	1	. 16	. 38	2.8	1.2	. 93	1.4	0.03 ?	27.8

- Scientists do not yet know.

321

USEFUL DATA FOR SPACE MISSION PROBLEM DECK

Speed of Light:
Speed of Orbiter in Orbit:
Speed of Fastest Known Space Vehicle:
Approximate Distance from Kennedy Space Center to Paris: 5035 MI.

186,000 Miles per Second 17,500 MPH
149,125 MPH

Height of Bunker Hill Monument :
Height of Prudential Building:
Height of John Hancock Building:
Height of John Hancock Building:
Height of Big Blue in the Blue Hills:
Height of Mo! :is: Washington:
Height of !.iount Everest:

221 FT. 750 FT.
780 FT.
610 FT.
6,288 FT.
29, 141 FT.

[^0]: 88 days 107,300
 $r 24$ hours 12,200
 2112 hours

 \approx| 110,000 |
 | :--- |
 | $\times 2000$ | $\frac{x 2000}{220,000,000 \text { miles }}$

[^1]: Regonal Math Nework- Haviard Groduce Sctiool ot Education. Harvard Unvershy

[^2]: NOTES: 6. Flown by Cosmenawti Aleskey A. Leonov and Valeriy N. Kubasov: , ission durstion 5 days. 22 hours, 30 minutes, 54 sec.

[^3]: Fact Book

[^4]: Reglonal Maxth Network - Harvard Graduate School of Education • Harvard University

[^5]: Regional Meth Notwork • Haverd Graduate School of Education - Hanvard Universly

